Left off formatting at the beginning of the consistency section maybe make some sort of reference for the footnotes
library(lavaan)
library(qgraph)
library(igraph)
library(glasso)
library(mlVAR)
library(graphicalVAR)
library(gimme)
library(knitr)
library(kableExtra)
library(gridExtra)
library(Rmisc)
library(psych)
library(stargazer)
library(Matrix)
library(papaja)
library(pander)
library(RColorBrewer)
library(stringr)
library(magrittr)
library(data.table)
library(plyr)
library(tidyverse)
res_path <- "https://github.com/emoriebeck/Idiographic-Network-Consistency"
esm_codebook <- tbl_df(readr::read_csv(sprintf("%s/raw/master/data/Codebook.csv", res_path)))
meanSD_r2z2r <- function(x) {
z <- fisherz(x)
z[is.infinite(z)] <- NA
x_bar <- mean(z, na.rm = T)
x_sd <- sd(z, na.rm = T)
r_bar <- fisherz2r(x_bar)
r_sd <- fisherz2r(x_sd)
return(c(r_bar, r_sd))
}
The data include three waves of experience sampling method data from the Personality and Intimate Relationship Study. Data were previously cleaned to remove data points that did not meet inclusion criteria.
wave1_all <- readr::read_csv(sprintf("%s/raw/master/data/esm_w1_redacted.csv", res_path)) %>% tbl_df
wave4_all <- readr::read_csv(sprintf("%s/raw/master/data/esm_w4_redacted.csv", res_path)) %>% tbl_df
wave7_all <- readr::read_csv(sprintf("%s/raw/master/data/esm_w7_redacted.csv", res_path)) %>% tbl_df
Because the data sets include data that are not being used in this study, we extract the relevant columns (Subject ID, frequency, hour block, day of study, measurement point, and personality items) from the original data frames. Next, we rename the columns for later ease of use and visualization. Finally, because of the small sample size for waves 4 and 7, we merge those data sets.
old.names <- esm_codebook$old_name
new.names <- esm_codebook$new_name
#Getting necessary columns
#Keeping subject ID and all esm.BFI items
w1 <- wave1_all %>%
select(one_of(paste(old.names, "w1", sep = "."))) %>%
setNames(new.names) %>% # change column names
mutate(wave = "1")
w4 <- wave4_all %>%
select(one_of(paste(old.names, "w4", sep = "."))) %>%
setNames(new.names) %>% # change column names
mutate(wave = "4")
w7 <- wave7_all %>%
select(one_of(paste(old.names, "w7", sep = "."))) %>%
setNames(new.names) %>% # change column names
mutate(wave = "7")
# merge wave 4 and 7 data sets
w2 <- w4 %>% full_join(w7)
head(w1)
head(w2)
Variable | New Name | Description |
---|---|---|
esm.IDnum.w1 | SID | numeric variable; identification number |
esm.BFI37.w1 | A_rude | agreeablness, negative; “During the last hour, how rude were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI21.w1 | E_quiet | extraversion, negative; “During the last hour, how quiet were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI23.w1 | C_lazy | conscientiousness, negative; “During the last hour, how lazy were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI09.w1 | N_relaxed | neuroticism, positive; “During the last hour, how relaxed were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI04.w1 | N_depressed | neuroticism, positive; “During the last hour, did you feel ‘depressed, blue’?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI36.w1 | E_outgoing | extraversion, positive; “During the last hour, how ‘outgoing, sociable’ were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI32.w1 | A_kind | agreeablness, positive; “During the last hour, how ‘considerate, kind’ were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI13.w1 | C_reliable | conscientiousness, positive; “During the last hour, how reliable were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
esm.BFI19.w1 | N_worried | neuroticism, positive; “During the last hour, how worried were you?” Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very |
Participants in the study only answered Agreeableness items if they indicated they were interacting with another person during the hour block previous to responding. To retain those measurement points for use in models later, we fill in gaps using within-person means of Agreeabless items.
for (i in unique(w1$SID)){
mean_A_rude <- mean(w1$A_rude[w1$SID == i], na.rm = T)
w1$A_rude[is.na(w1$A_rude) & w1$SID == i] <- mean_A_rude
mean_A_kind <- mean(w1$A_kind[w1$SID == i], na.rm = T)
w1$A_kind[is.na(w1$A_kind) & w1$SID == i] <- mean_A_kind
}
for (i in unique(w2$SID)){
mean_A_rude <- mean(w2$A_rude[w2$SID == i], na.rm = T)
w2$A_rude[is.na(w2$A_rude) & w2$SID == i] <- mean_A_rude
mean_A_kind <- mean(w2$A_kind[w2$SID == i], na.rm = T)
w2$A_kind[is.na(w2$A_kind) & w2$SID == i] <- mean_A_kind
}
Because we want to know the precise order of responses of actually collected responses, we make a column with sequential numbering. Then we calculate composites for at item for later use.
To be able to construct individual networks for participants, we ideally need approximately 50 measurement points. However, for current purposes, we will keep all participants who have at least 10 responses, lest we eliminate a large portion of our subjects.
w1 <- w1 %>%
filter(complete.cases(.)) %>%
group_by(SID) %>%
arrange(day, hourBlock) %>%
mutate(beep_seq = seq(1, n(), 1)) %>%
group_by(SID) %>%
mutate_at(vars(A_rude:N_worried), funs(comp = mean)) %>%
ungroup()
w2 <- w2 %>%
filter(complete.cases(.)) %>%
group_by(SID) %>%
arrange(wave, day, hourBlock) %>%
mutate(beep_seq = seq(1, n(), 1)) %>%
group_by(SID) %>%
mutate_at(vars(A_rude:N_worried), funs(comp = mean)) %>%
ungroup()
jitter_fun <- function(df){
sd_fun <- function(x){if(sd(x, na.rm = T) == 0 | (length(unique(x)) == 2 & any(table(x) < 2))) jitter(x, amount = runif(1,0,.05)) else x}
df2 <- data.frame(apply(df, 2, sd_fun))
colnames(df2) <- colnames(df2)
return(df2)
}
# filter out people who had < 10 responses and
#calculate SD's to find people with no variance in responses
w1 <- w1 %>%
select(SID, wave, beep_seq, A_rude:N_worried) %>%
group_by(SID) %>%
mutate_if(is.integer, as.numeric) %>%
mutate(count = n()) %>%
filter(count > 10) %>%
group_by(SID, count, wave) %>%
nest() %>%
mutate(data2 = map(data, jitter_fun)) %>%
unnest(data2, .drop = T)
w2 <- w2 %>%
select(SID, beep_seq, A_rude:N_worried) %>%
group_by(SID) %>%
mutate_if(is.integer, as.numeric) %>%
mutate(count = n(), wave = "2") %>%
filter(count > 10) %>%
group_by(SID, count, wave) %>%
nest() %>%
mutate(data2 = map(data, jitter_fun)) %>%
unnest(data2, .drop = T)
head(w1)
head(w2)
### Table 1 ###
w1 %>% full_join(w2) %>%
gather(key = new_name, value = value, A_rude:N_worried, na.rm = T) %>%
left_join(esm_codebook %>% select(new_name, item_text)) %>%
group_by(SID, wave, new_name, item_text) %>%
summarize(mean = mean(value, na.rm = T)) %>%
group_by(wave, new_name, item_text) %>%
summarize(M = mean(mean, na.rm = T),
SD = sd(mean, na.rm = T)) %>%
ungroup() %>%
mutate(item_text = Hmisc::capitalize(str_remove_all(item_text,
"During the last hour, "))) %>%
gather(est, value, M, SD) %>%
unite(tmp, wave, est, sep = ".") %>%
spread(tmp, value) %>%
kable(., "html", escape = F, booktabs = T, digits = 2,
col.names = c("Variable Name", "Item Text", rep(c("M", "SD"), times = 2)),
caption = "Item Text and Descriptive Statistics of ESM Items for Waves 1 and 2",
align = c("l", "r", rep("c", 4))) %>%
kable_styling(full_width = F) %>%
add_header_above(c(" " = 2, "Wave 1" = 2, "Wave 2" = 2))
Variable Name | Item Text | M | SD | M | SD |
---|---|---|---|---|---|
A_kind | How ‘considerate, kind’ were you? | 3.42 | 0.60 | 3.37 | 0.63 |
A_rude | How rude were you? | 1.46 | 0.37 | 1.51 | 0.40 |
C_lazy | How lazy were you? | 2.48 | 0.53 | 2.40 | 0.56 |
C_reliable | How reliable were you? | 3.69 | 0.56 | 3.69 | 0.55 |
E_outgoing | How ‘outgoing, sociable’ were you? | 2.79 | 0.50 | 2.66 | 0.52 |
E_quiet | How quiet were you? | 3.23 | 0.44 | 3.34 | 0.45 |
N_depressed | Did you feel ‘depressed, blue’? | 1.64 | 0.53 | 1.60 | 0.48 |
N_relaxed | How relaxed were you? | 3.44 | 0.49 | 3.33 | 0.49 |
N_worried | How worried were you? | 2.27 | 0.60 | 2.31 | 0.59 |
Although mlVAR includes both population and subject level effects, it represents subject level effects as deviations from population effects rather than exmaning unique subject-level patterns. To assess such unique effects, below we construct individual networks for all subjects at each wave.
For idiographic networks, we estimate a Gaussian graphical model (GGM) variation of the vector autoregressive model (VAR), which estimates a partial correlation network in which correlations represent the correlation between variables after conditioning on all other variables. These models are regularized using a variant of the least absolute shrinkage and selection operator (LASSO), graphical LASSO (glasso). In addition, glasso includes a tuning parameter that can be set to control the sparsity of the network. Different values of the parameter can be chosen to optimize prediction accuracy to minimize an information criterion, such as the Bayesian information criterion (BIC) or the extended BIC (EBIC; Chen & Chen, 2008).
Note that a few subjects are manually removed below because the graphicalVAR function is still developmental and crashes R when run on their data.
load(url(sprintf("%s/blob/master/results/graphicalVAR_allvariations.RData?raw=true", res_path)))
# save those subjects to a vector
gVAR_fun <- function(sid, Wave, lambda_scale){
gamma <- 0
x <- all_dat %>% filter(SID == sid & wave == Wave) %>% select(A_rude:N_worried)
n <- nrow(x)
print(sprintf("%s Wave %s %s", sid, Wave, lambda_scale))
if(!lambda_scale %in% c("association", "mlVAR_EB")){
if(lambda_scale == ".25"){lambda <- seq(.025, .25, .025)}
else if(lambda_scale == ".5"){lambda <- seq(.025, .5, .025)}
else if(lambda_scale == "unregularized"){lambda = 0}
else{lambda <- n * .01}
fit <-
graphicalVAR(x, gamma = gamma, maxit.in = 1000, maxit.out = 1000,
lambda_beta = lambda, lambda_kappa = lambda,
verbose = T, scale = F, centerWithin = F)
} else if (lambda_scale == "association"){
x_lag <- x %>% mutate_all(funs(lag = lag))
CC <- cor(x, use = "pairwise")
DC <- cor(x_lag[,10:18], x_lag[,1:9], use = "pairwise")
rownames(DC) <- colnames(DC)
fit <- list(PDC = DC, PCC = CC)
} else {
model <- switch(as.numeric(Wave), fit1_w1, fit1_w2)
sub <- which(model$IDs == sid)
PDC <- model$results$Beta$subject[[sub]][,,1]
PCC <- model$results$Theta$pcor$subject[[sub]]
fit <- list(PDC = PDC, PCC = PCC)
}
return(fit)
}
all_dat <- w1 %>% full_join(w2) %>%
arrange(wave, SID)
gVAR_fit1 <- crossing(
SID = unique(w1$SID),
wave = 1,
lambda_scale = c(".5", ".25", "unregularized", "scaled", "association", "mlVAR_EB")
) %>%
full_join(
crossing(
SID = unique(w2$SID),
wave = 2,
lambda_scale = c(".5", ".25", "unregularized", "scaled", "association", "mlVAR_EB")
)
) %>%
arrange(SID, wave, lambda_scale) %>%
filter(!(wave == "2" & SID %in% c("89078", "65365", "20054")) &
!(wave == "1" & SID %in% c("34960", "27127", "47525"))) %>%
filter(lambda_scale == "association") %>%
mutate(gVAR_fit = pmap(list(SID, wave, lambda_scale), possibly(gVAR_fun, NA_real_)))
# save(gVAR_fit, file = sprintf("%s/results/graphicalVAR_allVariations.RData", res_path))
First, we have to create individual files for each subject, per the procedure to run GIMME.
dir.create(sprintf("%s/results/GIMME", res_path))
dir.create(sprintf("%s/results/GIMME/wave_1_data", res_path))
dir.create(sprintf("%s/results/GIMME/wave_2_data", res_path))
jitter_fun <- function(df){
u_fun <- function(x){if(length(unique(x)) == 1 | (length(unique(x)) == 2 & any(table(x) < 2))) jitter(x, amount = runif(1,0,.05)) else x}
df2 <- data.frame(apply(df, 2, u_fun))
colnames(df2) <- colnames(df2)
return(df2)
}
# Create separate files for each individual
write_file_fun <- function(x, sid, Wave){
x <- x %>% select(A_rude:N_worried)
write.csv(x, file = sprintf("%s/results/GIMME/wave_%s_data/%s.csv", res_path, Wave, sid), row.names = F)
}
w1 %>% full_join(w2) %>%
group_by(SID, wave) %>%
nest() %>%
filter(!(SID %in% c(1996, 1119, 2650, 28690, 42243, 43460,
52374, 56105, 60148, 60311, 8608, 10981,
94389, 77407, 76636, 59057, 38258, 42816,
81362, 85239, 95555) & wave == 1) |
!(SID %in% c(17656, 29431, 40883, 4481, 50556,
60759, 6777, 76636, 77453, 79375,
85741) & wave == 2)) %>%
mutate(data = map(data, jitter_fun),
write = pmap(list(data, SID, wave), write_file_fun))
Now, we can run the procedure. The results have to be saved to files in a separate directory.
# create results folders
dir.create(sprintf("%s/results/GIMME/wave_1_results", res_path))
dir.create(sprintf("%s/results/GIMME/wave_2_results", res_path))
gimme_w1 <- gimme( # can use "gimme" or "gimmeSEM"
data = sprintf("%s/results/GIMME/wave_1_data", res_path), # source directory where your data are
out = sprintf("%s/results/GIMME/wave_1_results", res_path),# output directory where you'd like your output to go
sep = ",", # how data are separated. "" for space; "," for comma, "/t" for tab-delimited
header = TRUE, # TRUE or FALSE, is there a header
ar = TRUE, # TRUE (default) or FALSE, start with autoregressive paths open
plot = TRUE, # TRUE (default) or FALSE, generate plots
subgroup = FALSE, # TRUE or FALSE (default), cluster individuals based on similarities in effects
paths = NULL, # option to list paths that will be group-level (semi-confirmatory)
groupcutoff = .75, # the proportion that is considered the majority at the group level
subcutoff = .5 # the proportion that is considered the majority at the subgroup level
)
gimme_w2 <- gimme( # can use "gimme" or "gimmeSEM"
data = sprintf("%s/results/GIMME/wave_2_data", res_path), # source directory where your data are
out = sprintf("%s/results/GIMME/wave_2_results", res_path),# output directory where you'd like your output to go
sep = ",", # how data are separated. "" for space; "," for comma, "/t" for tab-delimited
header = TRUE, # TRUE or FALSE, is there a header
ar = TRUE, # TRUE (default) or FALSE, start with autoregressive paths open
plot = TRUE, # TRUE (default) or FALSE, generate plots
subgroup = FALSE, # TRUE or FALSE (default), cluster individuals based on similarities in effects
paths = NULL, # option to list paths that will be group-level (semi-confirmatory)
groupcutoff = .75, # the proportion that is considered the majority at the group level
subcutoff = .5 # the proportion that is considered the majority at the subgroup level
)
load(url(sprintf("%s/blob/master/results/gimme.RData?raw=true", res_path)))
gimme_fun <- function(fit){
PCC <- fit[,!grepl("lag", colnames(fit))]
PCC <- apply(simplify2array(list(PCC, t(PCC))), 1:2, mean)
diag(PCC) <- 1
fit <- list(PDC = fit[,grepl("lag", colnames(fit))],
PCC = PCC)
colnames(fit$PDC) <- colnames(fit$PCC)
fit
}
gVAR_fit <- gVAR_fit %>%
bind_rows(
tibble(SID = as.numeric(names(gimme_w1$path_est_mats)),
gVAR_fit = gimme_w1$path_est_mats,
wave = 1) %>%
bind_rows(tibble(
SID = as.numeric(names(gimme_w2$path_est_mats)),
gVAR_fit = gimme_w2$path_est_mats,
wave = 2)) %>%
mutate(lambda_scale = "gimme",
gVAR_fit = map(gVAR_fit, gimme_fun))
)
# short function for extracting lagged results and saving to a long format df
temp_fun <- function(fit, SID){
PDC <- fit$PDC
from <- row.names(PDC)
PDC.long <- tbl_df(PDC) %>%
mutate(from = from, type = "Lagged") %>%
gather(key = to, value = weight, A_rude:N_worried)
}
# short fun for extracting contemporaneous matrix
contemp_mat_fun <- function(fit){fit$PCC}
# short fun for extracting contemporaneous results and saving to long format df
contemp_long_fun <- function(fit){
PCC <- fit$PCC
PCC <- PCC[,order(colnames(PCC))]
PCC <- PCC[order(rownames(PCC)),]
PCC[lower.tri(PCC, diag = T)] <- NA
vars <- rownames(PCC)
PCC.long <- tbl_df(PCC) %>%
mutate(Var1 = vars,
type = "Contemporaneous") %>%
gather(key = Var2, value = weight, A_kind:N_worried) %>%
filter(!is.na(weight)) %>%
unite(var, Var1, Var2, sep = ".", remove = F)
}
# load idiographic networks #
load(url(sprintf("%s/raw/master/results/graphicalVAR_allvariations.RData?raw=true", res_path)))
# run functions for extraction
gVAR_fit <- gVAR_fit %>%
filter(!is.na(gVAR_fit)) %>%
mutate(temp = map2(gVAR_fit, SID, possibly(temp_fun, NA_real_)),
contemp_mat = map(gVAR_fit, possibly(contemp_mat_fun, NA_real_)),
contemp = map(gVAR_fit, possibly(contemp_long_fun, NA_real_)))
# Lagged: Partial Directed Correlations
temp_long <- gVAR_fit %>%
unnest(temp, .drop = T) %>%
mutate(type = "Lagged")
# grab and print averages
temp_long %>%
group_by(wave, lambda_scale, from, to) %>%
summarise_at(vars(weight), funs(M = fisherz2r(mean(fisherz(.), na.rm = T)),
sd(., na.rm = T), kurtosi, skew)) %>%
gather(est, value, M:skew) %>%
unite(tmp, wave, est, sep = ".") %>%
# arrange(desc(r)) %>%
spread(key = tmp, value = value) %>%
kable(., "html", booktabs = T, longtable = T, digits = 2,
caption = "Descriptives of Lagged Edge Weights",
col.names = c("Network Type", "From", "To", rep(c("Kurtosi", "M", "SD", "Skew"),2))) %>%
kable_styling(bootstrap_options = c("striped"),full_width = T) %>%
add_header_above(c(" " = 3, "Wave 1" = 4, "Wave 2" = 4)) %>%
scroll_box(width = "750px", height = "400px")
Network Type | From | To | Kurtosi | M | SD | Skew | Kurtosi | M | SD | Skew |
---|---|---|---|---|---|---|---|---|---|---|
.25 | A_kind | A_kind | 10.97 | -0.01 | 0.16 | 0.05 | 7.06 | -0.02 | 0.16 | -1.90 |
.25 | A_kind | A_rude | 9.43 | 0.06 | 0.21 | 0.88 | 7.28 | 0.07 | 0.23 | -0.02 |
.25 | A_kind | C_lazy | 17.73 | 0.00 | 0.16 | 0.00 | 10.65 | 0.10 | 0.20 | 2.77 |
.25 | A_kind | C_reliable | 15.79 | 0.02 | 0.15 | 1.90 | 8.49 | -0.02 | 0.22 | 0.08 |
.25 | A_kind | E_outgoing | 19.21 | -0.07 | 0.17 | -2.04 | 11.56 | -0.04 | 0.19 | -2.23 |
.25 | A_kind | E_quiet | 18.10 | 0.01 | 0.16 | 0.72 | 14.50 | 0.07 | 0.16 | 2.89 |
.25 | A_kind | N_depressed | 10.28 | -0.04 | 0.20 | -1.08 | 6.18 | 0.05 | 0.27 | 0.21 |
.25 | A_kind | N_relaxed | 21.55 | -0.01 | 0.15 | -0.47 | 12.57 | -0.06 | 0.20 | 0.08 |
.25 | A_kind | N_worried | 16.96 | 0.02 | 0.17 | 0.87 | 11.67 | 0.03 | 0.19 | 0.50 |
.25 | A_rude | A_kind | 14.13 | -0.01 | 0.14 | 0.00 | 9.41 | 0.02 | 0.20 | 0.26 |
.25 | A_rude | A_rude | 8.93 | -0.01 | 0.16 | -0.44 | 9.07 | 0.00 | 0.20 | 0.02 |
.25 | A_rude | C_lazy | 24.70 | 0.00 | 0.13 | -0.27 | 10.81 | -0.02 | 0.20 | -0.61 |
.25 | A_rude | C_reliable | 26.44 | 0.00 | 0.13 | -0.71 | 11.74 | 0.02 | 0.17 | 1.60 |
.25 | A_rude | E_outgoing | 43.35 | 0.01 | 0.12 | 1.28 | 15.79 | 0.02 | 0.18 | 0.77 |
.25 | A_rude | E_quiet | 26.39 | 0.00 | 0.13 | 0.60 | 18.68 | 0.01 | 0.13 | 1.27 |
.25 | A_rude | N_depressed | 17.19 | 0.01 | 0.15 | 0.47 | 13.10 | 0.05 | 0.19 | 1.38 |
.25 | A_rude | N_relaxed | 19.67 | -0.01 | 0.09 | -0.19 | 18.62 | -0.02 | 0.17 | -0.53 |
.25 | A_rude | N_worried | 27.26 | 0.00 | 0.13 | -0.64 | 14.50 | -0.09 | 0.18 | -1.62 |
.25 | C_lazy | A_kind | 11.34 | 0.04 | 0.18 | 1.59 | 11.32 | -0.02 | 0.21 | -1.03 |
.25 | C_lazy | A_rude | 7.33 | -0.08 | 0.22 | -0.54 | 6.96 | 0.02 | 0.24 | 1.11 |
.25 | C_lazy | C_lazy | 13.66 | 0.01 | 0.13 | 0.98 | 9.74 | 0.00 | 0.17 | -0.65 |
.25 | C_lazy | C_reliable | 15.01 | 0.03 | 0.15 | 1.11 | 6.99 | 0.00 | 0.20 | 0.50 |
.25 | C_lazy | E_outgoing | 17.46 | 0.06 | 0.17 | 2.04 | 13.40 | 0.00 | 0.19 | 0.13 |
.25 | C_lazy | E_quiet | 21.76 | -0.04 | 0.15 | -1.26 | 14.97 | -0.03 | 0.18 | -1.73 |
.25 | C_lazy | N_depressed | 8.62 | 0.03 | 0.20 | 0.63 | 7.99 | 0.02 | 0.24 | 0.39 |
.25 | C_lazy | N_relaxed | 14.59 | 0.02 | 0.16 | 0.51 | 10.68 | 0.00 | 0.22 | -0.14 |
.25 | C_lazy | N_worried | 13.40 | -0.02 | 0.18 | -0.91 | 9.30 | 0.16 | 0.22 | 1.64 |
.25 | C_reliable | A_kind | 9.06 | 0.02 | 0.17 | 0.75 | 11.53 | -0.01 | 0.20 | -0.87 |
.25 | C_reliable | A_rude | 8.17 | 0.00 | 0.21 | -0.68 | 9.20 | -0.10 | 0.21 | -2.19 |
.25 | C_reliable | C_lazy | 16.25 | 0.00 | 0.14 | 0.23 | 8.47 | -0.05 | 0.21 | -1.68 |
.25 | C_reliable | C_reliable | 11.21 | 0.00 | 0.15 | -0.34 | 6.41 | 0.01 | 0.21 | 0.24 |
.25 | C_reliable | E_outgoing | 19.68 | 0.01 | 0.16 | -0.91 | 24.97 | -0.01 | 0.14 | -1.04 |
.25 | C_reliable | E_quiet | 17.47 | 0.00 | 0.15 | 0.66 | 19.28 | -0.02 | 0.16 | -0.93 |
.25 | C_reliable | N_depressed | 11.32 | -0.03 | 0.19 | 0.05 | 9.42 | -0.01 | 0.21 | 0.84 |
.25 | C_reliable | N_relaxed | 15.98 | 0.03 | 0.14 | 1.51 | 14.33 | 0.09 | 0.21 | 0.90 |
.25 | C_reliable | N_worried | 11.02 | -0.02 | 0.16 | -1.34 | 11.87 | -0.13 | 0.22 | -0.17 |
.25 | E_outgoing | A_kind | 10.65 | 0.02 | 0.17 | 0.47 | 8.15 | 0.06 | 0.21 | 0.87 |
.25 | E_outgoing | A_rude | 6.49 | -0.10 | 0.22 | -0.84 | 5.71 | -0.08 | 0.24 | -0.08 |
.25 | E_outgoing | C_lazy | 17.95 | 0.00 | 0.15 | 0.37 | 10.54 | 0.00 | 0.22 | -0.46 |
.25 | E_outgoing | C_reliable | 13.46 | -0.02 | 0.16 | -1.65 | 6.96 | -0.05 | 0.23 | -0.61 |
.25 | E_outgoing | E_outgoing | 15.32 | 0.02 | 0.15 | 1.34 | 14.05 | 0.00 | 0.17 | -0.97 |
.25 | E_outgoing | E_quiet | 17.73 | -0.01 | 0.14 | -0.89 | 19.38 | 0.00 | 0.17 | -0.72 |
.25 | E_outgoing | N_depressed | 10.90 | -0.02 | 0.18 | 0.24 | 6.70 | 0.19 | 0.25 | 1.16 |
.25 | E_outgoing | N_relaxed | 13.44 | 0.00 | 0.16 | 0.09 | 9.21 | 0.04 | 0.21 | 0.72 |
.25 | E_outgoing | N_worried | 10.55 | 0.01 | 0.17 | 1.09 | 7.97 | 0.17 | 0.24 | 0.18 |
.25 | E_quiet | A_kind | 8.93 | 0.02 | 0.18 | 0.70 | 12.26 | -0.01 | 0.19 | 0.92 |
.25 | E_quiet | A_rude | 8.54 | -0.07 | 0.20 | -0.83 | 5.93 | 0.03 | 0.25 | 0.42 |
.25 | E_quiet | C_lazy | 14.52 | 0.00 | 0.15 | -0.31 | 8.66 | 0.04 | 0.24 | 0.25 |
.25 | E_quiet | C_reliable | 15.59 | -0.01 | 0.16 | -1.60 | 7.30 | -0.01 | 0.24 | 0.12 |
.25 | E_quiet | E_outgoing | 20.94 | 0.04 | 0.16 | 2.23 | 11.70 | 0.02 | 0.19 | 0.92 |
.25 | E_quiet | E_quiet | 15.35 | -0.02 | 0.14 | -1.79 | 12.04 | -0.01 | 0.16 | -2.09 |
.25 | E_quiet | N_depressed | 13.37 | 0.00 | 0.18 | 1.20 | 6.54 | 0.10 | 0.26 | 0.55 |
.25 | E_quiet | N_relaxed | 12.15 | 0.02 | 0.14 | 1.73 | 13.00 | 0.03 | 0.21 | 1.73 |
.25 | E_quiet | N_worried | 10.11 | 0.03 | 0.17 | 1.88 | 8.83 | 0.18 | 0.23 | 0.88 |
.25 | N_depressed | A_kind | 15.86 | 0.00 | 0.17 | 0.59 | 12.83 | 0.00 | 0.15 | 1.13 |
.25 | N_depressed | A_rude | 8.05 | 0.05 | 0.22 | 0.46 | 11.50 | 0.01 | 0.19 | -0.26 |
.25 | N_depressed | C_lazy | 17.24 | -0.01 | 0.15 | -1.79 | 12.17 | -0.02 | 0.18 | -1.25 |
.25 | N_depressed | C_reliable | 18.39 | -0.01 | 0.15 | -0.83 | 9.42 | 0.03 | 0.16 | 0.57 |
.25 | N_depressed | E_outgoing | 22.08 | -0.01 | 0.15 | -1.26 | 17.25 | 0.03 | 0.16 | 2.16 |
.25 | N_depressed | E_quiet | 19.70 | 0.01 | 0.13 | 0.98 | 22.39 | -0.02 | 0.14 | -3.48 |
.25 | N_depressed | N_depressed | 8.45 | 0.01 | 0.18 | -1.52 | 7.00 | 0.04 | 0.21 | 0.85 |
.25 | N_depressed | N_relaxed | 20.40 | -0.02 | 0.13 | -1.11 | 19.84 | -0.04 | 0.13 | -2.84 |
.25 | N_depressed | N_worried | 21.49 | 0.03 | 0.13 | 2.38 | 18.26 | -0.09 | 0.15 | -1.68 |
.25 | N_relaxed | A_kind | 12.88 | -0.01 | 0.19 | 0.10 | 7.37 | 0.02 | 0.21 | 0.56 |
.25 | N_relaxed | A_rude | 6.47 | -0.09 | 0.24 | -0.69 | 6.48 | 0.05 | 0.22 | 0.45 |
.25 | N_relaxed | C_lazy | 14.44 | 0.02 | 0.16 | -0.09 | 9.22 | -0.02 | 0.21 | -0.73 |
.25 | N_relaxed | C_reliable | 12.69 | 0.01 | 0.18 | 0.37 | 9.36 | 0.03 | 0.21 | 0.22 |
.25 | N_relaxed | E_outgoing | 18.76 | -0.02 | 0.17 | -0.42 | 12.12 | 0.02 | 0.20 | 1.72 |
.25 | N_relaxed | E_quiet | 16.30 | 0.00 | 0.16 | -0.81 | 15.27 | 0.02 | 0.17 | 0.25 |
.25 | N_relaxed | N_depressed | 7.48 | -0.04 | 0.21 | -0.27 | 7.93 | 0.08 | 0.24 | 1.62 |
.25 | N_relaxed | N_relaxed | 11.97 | 0.00 | 0.14 | 0.50 | 11.45 | -0.04 | 0.17 | -2.41 |
.25 | N_relaxed | N_worried | 12.10 | -0.01 | 0.16 | 0.77 | 9.23 | -0.07 | 0.21 | 0.54 |
.25 | N_worried | A_kind | 13.59 | 0.00 | 0.17 | 1.12 | 7.07 | 0.06 | 0.20 | 1.65 |
.25 | N_worried | A_rude | 7.65 | 0.02 | 0.21 | -0.57 | 7.07 | 0.01 | 0.23 | -0.05 |
.25 | N_worried | C_lazy | 12.12 | -0.01 | 0.17 | -0.08 | 9.86 | 0.03 | 0.22 | 0.78 |
.25 | N_worried | C_reliable | 16.29 | 0.00 | 0.17 | 1.01 | 9.71 | -0.02 | 0.20 | -0.09 |
.25 | N_worried | E_outgoing | 21.97 | -0.05 | 0.16 | -1.36 | 9.96 | -0.02 | 0.21 | -0.24 |
.25 | N_worried | E_quiet | 18.52 | 0.03 | 0.16 | 1.55 | 21.13 | 0.06 | 0.16 | 3.98 |
.25 | N_worried | N_depressed | 10.52 | 0.01 | 0.19 | 0.48 | 7.48 | 0.07 | 0.23 | 0.86 |
.25 | N_worried | N_relaxed | 13.94 | -0.04 | 0.16 | -0.81 | 9.89 | -0.07 | 0.19 | -1.83 |
.25 | N_worried | N_worried | 8.91 | 0.03 | 0.15 | 0.94 | 7.03 | 0.05 | 0.19 | -0.02 |
.5 | A_kind | A_kind | 14.45 | -0.01 | 0.15 | 0.06 | 8.57 | -0.03 | 0.15 | -2.08 |
.5 | A_kind | A_rude | 11.69 | 0.06 | 0.20 | 1.04 | 8.93 | 0.07 | 0.22 | 0.12 |
.5 | A_kind | C_lazy | 20.20 | 0.00 | 0.15 | 0.10 | 11.34 | 0.10 | 0.20 | 2.87 |
.5 | A_kind | C_reliable | 18.06 | 0.02 | 0.15 | 2.05 | 8.65 | -0.02 | 0.21 | 0.11 |
.5 | A_kind | E_outgoing | 21.57 | -0.07 | 0.16 | -2.48 | 11.68 | -0.04 | 0.19 | -2.23 |
.5 | A_kind | E_quiet | 19.48 | 0.01 | 0.16 | 0.79 | 14.73 | 0.07 | 0.16 | 2.92 |
.5 | A_kind | N_depressed | 11.42 | -0.03 | 0.20 | -1.23 | 7.42 | 0.05 | 0.25 | 0.46 |
.5 | A_kind | N_relaxed | 24.75 | -0.01 | 0.14 | -0.45 | 14.39 | -0.05 | 0.18 | 0.73 |
.5 | A_kind | N_worried | 18.87 | 0.01 | 0.16 | 1.02 | 12.23 | 0.03 | 0.19 | 0.50 |
.5 | A_rude | A_kind | 16.29 | 0.00 | 0.13 | 0.02 | 9.90 | 0.03 | 0.18 | 1.28 |
.5 | A_rude | A_rude | 11.44 | -0.01 | 0.16 | -0.54 | 10.55 | 0.00 | 0.19 | 0.72 |
.5 | A_rude | C_lazy | 25.29 | 0.00 | 0.13 | -0.29 | 12.29 | -0.01 | 0.19 | -0.15 |
.5 | A_rude | C_reliable | 30.67 | 0.00 | 0.13 | -0.68 | 11.81 | 0.01 | 0.15 | 1.01 |
.5 | A_rude | E_outgoing | 44.52 | 0.01 | 0.12 | 1.32 | 15.92 | 0.02 | 0.18 | 0.81 |
.5 | A_rude | E_quiet | 26.77 | 0.00 | 0.13 | 0.62 | 18.54 | 0.01 | 0.13 | 1.26 |
.5 | A_rude | N_depressed | 18.89 | 0.01 | 0.14 | 0.25 | 15.60 | 0.01 | 0.16 | 0.91 |
.5 | A_rude | N_relaxed | 24.20 | -0.01 | 0.09 | -0.19 | 20.99 | 0.00 | 0.14 | 1.10 |
.5 | A_rude | N_worried | 31.57 | 0.00 | 0.12 | -0.53 | 16.35 | -0.09 | 0.17 | -1.70 |
.5 | C_lazy | A_kind | 15.59 | 0.04 | 0.17 | 2.03 | 17.15 | -0.05 | 0.18 | -2.87 |
.5 | C_lazy | A_rude | 10.43 | -0.08 | 0.20 | -0.74 | 9.38 | 0.02 | 0.22 | 1.18 |
.5 | C_lazy | C_lazy | 20.86 | 0.00 | 0.12 | 1.49 | 12.14 | 0.00 | 0.16 | -0.60 |
.5 | C_lazy | C_reliable | 22.64 | 0.04 | 0.13 | 1.54 | 7.75 | -0.01 | 0.18 | -0.13 |
.5 | C_lazy | E_outgoing | 20.47 | 0.07 | 0.17 | 2.30 | 13.80 | 0.00 | 0.19 | 0.11 |
.5 | C_lazy | E_quiet | 25.95 | -0.04 | 0.14 | -1.53 | 16.11 | -0.03 | 0.18 | -1.85 |
.5 | C_lazy | N_depressed | 10.76 | 0.02 | 0.19 | 0.57 | 9.99 | -0.01 | 0.21 | 0.00 |
.5 | C_lazy | N_relaxed | 20.42 | 0.02 | 0.15 | 0.68 | 12.39 | 0.03 | 0.20 | 0.47 |
.5 | C_lazy | N_worried | 17.95 | -0.02 | 0.17 | -1.18 | 11.79 | 0.12 | 0.20 | 1.52 |
.5 | C_reliable | A_kind | 13.09 | 0.01 | 0.16 | 1.10 | 12.95 | -0.04 | 0.18 | -2.24 |
.5 | C_reliable | A_rude | 11.16 | 0.00 | 0.20 | -0.83 | 10.40 | -0.10 | 0.20 | -2.34 |
.5 | C_reliable | C_lazy | 19.22 | 0.01 | 0.13 | 0.20 | 9.60 | -0.05 | 0.21 | -1.85 |
.5 | C_reliable | C_reliable | 14.65 | 0.00 | 0.14 | -0.43 | 7.76 | 0.00 | 0.20 | 0.16 |
.5 | C_reliable | E_outgoing | 21.22 | 0.01 | 0.15 | -0.94 | 25.40 | -0.01 | 0.14 | -1.06 |
.5 | C_reliable | E_quiet | 19.54 | 0.00 | 0.14 | 0.67 | 19.24 | -0.02 | 0.17 | -0.92 |
.5 | C_reliable | N_depressed | 13.07 | -0.03 | 0.18 | 0.04 | 12.36 | -0.04 | 0.18 | 0.26 |
.5 | C_reliable | N_relaxed | 20.27 | 0.02 | 0.13 | 1.65 | 18.01 | 0.06 | 0.19 | 0.42 |
.5 | C_reliable | N_worried | 14.32 | -0.02 | 0.15 | -1.75 | 14.26 | -0.15 | 0.20 | -0.92 |
.5 | E_outgoing | A_kind | 14.93 | 0.01 | 0.15 | 0.66 | 11.97 | 0.01 | 0.17 | 0.05 |
.5 | E_outgoing | A_rude | 8.32 | -0.09 | 0.21 | -1.09 | 6.90 | -0.13 | 0.22 | -0.56 |
.5 | E_outgoing | C_lazy | 23.55 | 0.00 | 0.14 | 0.48 | 11.72 | -0.05 | 0.20 | -1.30 |
.5 | E_outgoing | C_reliable | 15.43 | -0.02 | 0.16 | -1.87 | 8.00 | 0.00 | 0.20 | -0.17 |
.5 | E_outgoing | E_outgoing | 17.04 | 0.01 | 0.15 | 1.51 | 16.71 | 0.00 | 0.17 | -1.06 |
.5 | E_outgoing | E_quiet | 19.30 | -0.01 | 0.14 | -0.85 | 21.62 | 0.00 | 0.17 | -0.77 |
.5 | E_outgoing | N_depressed | 13.25 | -0.02 | 0.17 | 0.38 | 8.18 | 0.11 | 0.23 | 1.04 |
.5 | E_outgoing | N_relaxed | 16.38 | 0.00 | 0.15 | 0.09 | 9.93 | 0.10 | 0.18 | 2.05 |
.5 | E_outgoing | N_worried | 13.52 | 0.01 | 0.15 | 0.90 | 9.60 | 0.11 | 0.22 | -0.27 |
.5 | E_quiet | A_kind | 12.75 | 0.02 | 0.17 | 0.92 | 17.35 | 0.05 | 0.16 | 3.11 |
.5 | E_quiet | A_rude | 11.16 | -0.07 | 0.19 | -1.11 | 7.29 | -0.01 | 0.23 | 0.23 |
.5 | E_quiet | C_lazy | 17.79 | 0.00 | 0.15 | -0.25 | 10.21 | 0.00 | 0.23 | -0.15 |
.5 | E_quiet | C_reliable | 20.80 | -0.01 | 0.15 | -2.08 | 8.40 | 0.03 | 0.22 | 0.74 |
.5 | E_quiet | E_outgoing | 23.65 | 0.04 | 0.15 | 2.48 | 12.31 | 0.02 | 0.19 | 0.93 |
.5 | E_quiet | E_quiet | 17.28 | -0.02 | 0.14 | -1.93 | 14.46 | -0.01 | 0.15 | -2.43 |
.5 | E_quiet | N_depressed | 15.66 | 0.00 | 0.17 | 1.40 | 8.10 | 0.01 | 0.24 | 0.32 |
.5 | E_quiet | N_relaxed | 17.40 | 0.02 | 0.13 | 2.24 | 16.69 | 0.10 | 0.18 | 3.49 |
.5 | E_quiet | N_worried | 13.53 | 0.03 | 0.15 | 2.34 | 9.96 | 0.12 | 0.22 | 0.56 |
.5 | N_depressed | A_kind | 18.08 | 0.00 | 0.16 | 0.60 | 14.98 | 0.00 | 0.14 | 1.29 |
.5 | N_depressed | A_rude | 9.77 | 0.05 | 0.21 | 0.40 | 13.55 | 0.01 | 0.18 | -0.22 |
.5 | N_depressed | C_lazy | 19.25 | -0.02 | 0.15 | -2.16 | 12.24 | -0.01 | 0.18 | -1.27 |
.5 | N_depressed | C_reliable | 25.73 | -0.01 | 0.14 | -1.02 | 10.16 | 0.02 | 0.16 | 0.59 |
.5 | N_depressed | E_outgoing | 23.37 | -0.01 | 0.15 | -1.37 | 18.08 | 0.03 | 0.16 | 2.23 |
.5 | N_depressed | E_quiet | 20.56 | 0.01 | 0.13 | 1.03 | 22.97 | -0.02 | 0.14 | -3.54 |
.5 | N_depressed | N_depressed | 11.33 | -0.01 | 0.16 | -1.86 | 9.02 | 0.02 | 0.20 | 1.03 |
.5 | N_depressed | N_relaxed | 23.62 | -0.01 | 0.13 | -1.12 | 22.31 | -0.04 | 0.13 | -2.99 |
.5 | N_depressed | N_worried | 25.28 | 0.02 | 0.13 | 2.68 | 19.23 | -0.09 | 0.15 | -1.69 |
.5 | N_relaxed | A_kind | 17.10 | 0.00 | 0.18 | 0.17 | 9.52 | 0.01 | 0.20 | 0.65 |
.5 | N_relaxed | A_rude | 8.04 | -0.09 | 0.23 | -0.80 | 8.19 | 0.04 | 0.21 | 0.58 |
.5 | N_relaxed | C_lazy | 17.00 | 0.01 | 0.15 | -0.08 | 10.08 | -0.02 | 0.21 | -0.72 |
.5 | N_relaxed | C_reliable | 17.62 | 0.00 | 0.16 | 0.41 | 9.59 | 0.03 | 0.21 | 0.28 |
.5 | N_relaxed | E_outgoing | 19.53 | -0.02 | 0.17 | -0.42 | 12.81 | 0.02 | 0.20 | 1.79 |
.5 | N_relaxed | E_quiet | 18.10 | -0.01 | 0.15 | -0.89 | 16.10 | 0.02 | 0.17 | 0.25 |
.5 | N_relaxed | N_depressed | 8.72 | -0.03 | 0.20 | -0.30 | 10.18 | 0.08 | 0.22 | 1.89 |
.5 | N_relaxed | N_relaxed | 14.29 | 0.00 | 0.13 | 0.56 | 13.23 | -0.04 | 0.16 | -2.69 |
.5 | N_relaxed | N_worried | 15.22 | 0.00 | 0.15 | 0.97 | 10.38 | -0.07 | 0.21 | 0.54 |
.5 | N_worried | A_kind | 20.35 | 0.00 | 0.15 | 1.51 | 12.14 | 0.05 | 0.17 | 1.95 |
.5 | N_worried | A_rude | 9.97 | 0.01 | 0.20 | -0.63 | 8.38 | 0.01 | 0.22 | -0.01 |
.5 | N_worried | C_lazy | 15.07 | 0.00 | 0.16 | 0.02 | 10.30 | 0.03 | 0.21 | 0.81 |
.5 | N_worried | C_reliable | 20.60 | 0.00 | 0.16 | 1.13 | 10.38 | -0.02 | 0.20 | -0.12 |
.5 | N_worried | E_outgoing | 23.08 | -0.05 | 0.16 | -1.41 | 10.22 | -0.02 | 0.20 | -0.24 |
.5 | N_worried | E_quiet | 20.28 | 0.03 | 0.16 | 1.77 | 21.37 | 0.06 | 0.16 | 4.03 |
.5 | N_worried | N_depressed | 12.84 | 0.01 | 0.18 | 0.67 | 9.03 | 0.10 | 0.20 | 2.02 |
.5 | N_worried | N_relaxed | 18.88 | -0.03 | 0.15 | -1.06 | 14.47 | -0.07 | 0.17 | -2.86 |
.5 | N_worried | N_worried | 13.43 | 0.01 | 0.14 | 1.46 | 8.82 | 0.02 | 0.19 | 0.25 |
association | A_kind | A_kind | -0.08 | 0.02 | 0.22 | -0.32 | 0.70 | 0.03 | 0.22 | -0.49 |
association | A_kind | A_rude | 0.43 | -0.01 | 0.21 | -0.25 | 1.34 | -0.02 | 0.24 | -0.26 |
association | A_kind | C_lazy | 0.45 | 0.00 | 0.22 | -0.08 | 1.11 | 0.02 | 0.19 | -0.36 |
association | A_kind | C_reliable | 0.11 | 0.01 | 0.21 | 0.07 | 0.55 | 0.03 | 0.20 | -0.29 |
association | A_kind | E_outgoing | 0.56 | -0.02 | 0.22 | -0.11 | 0.08 | -0.01 | 0.23 | -0.55 |
association | A_kind | E_quiet | -0.03 | 0.01 | 0.21 | 0.19 | 0.59 | 0.02 | 0.24 | 0.10 |
association | A_kind | N_depressed | 0.79 | -0.02 | 0.22 | -0.18 | -0.09 | -0.02 | 0.21 | 0.10 |
association | A_kind | N_relaxed | 0.08 | 0.00 | 0.22 | -0.15 | 0.77 | 0.03 | 0.21 | -0.22 |
association | A_kind | N_worried | 0.31 | 0.01 | 0.21 | 0.50 | 0.54 | -0.06 | 0.22 | -0.13 |
association | A_rude | A_kind | 0.26 | -0.01 | 0.21 | -0.10 | 0.74 | 0.01 | 0.21 | 0.19 |
association | A_rude | A_rude | 0.66 | 0.00 | 0.21 | 0.14 | 1.66 | 0.02 | 0.20 | 0.36 |
association | A_rude | C_lazy | 0.14 | 0.00 | 0.21 | 0.18 | 0.32 | 0.03 | 0.20 | -0.15 |
association | A_rude | C_reliable | 0.61 | -0.02 | 0.21 | -0.06 | 0.83 | 0.01 | 0.20 | 0.47 |
association | A_rude | E_outgoing | 0.54 | -0.01 | 0.21 | -0.12 | 0.52 | -0.01 | 0.19 | 0.12 |
association | A_rude | E_quiet | 0.16 | 0.00 | 0.20 | -0.08 | -0.44 | 0.01 | 0.19 | 0.00 |
association | A_rude | N_depressed | 0.74 | 0.04 | 0.20 | 0.26 | 0.38 | 0.01 | 0.18 | 0.41 |
association | A_rude | N_relaxed | 0.07 | -0.05 | 0.21 | -0.18 | -0.39 | -0.03 | 0.20 | -0.21 |
association | A_rude | N_worried | 0.05 | 0.04 | 0.21 | 0.23 | 2.22 | 0.07 | 0.21 | 0.48 |
association | C_lazy | A_kind | 0.58 | 0.00 | 0.20 | -0.02 | 0.53 | 0.00 | 0.23 | -0.07 |
association | C_lazy | A_rude | 0.65 | 0.00 | 0.21 | 0.05 | 0.70 | 0.05 | 0.21 | 0.01 |
association | C_lazy | C_lazy | 0.01 | 0.04 | 0.21 | -0.12 | 0.19 | 0.02 | 0.23 | -0.03 |
association | C_lazy | C_reliable | 0.25 | -0.02 | 0.21 | 0.21 | 0.38 | -0.03 | 0.24 | 0.37 |
association | C_lazy | E_outgoing | 0.46 | -0.01 | 0.21 | 0.14 | 0.20 | 0.00 | 0.20 | -0.04 |
association | C_lazy | E_quiet | 0.10 | 0.02 | 0.20 | -0.14 | 0.68 | -0.01 | 0.20 | -0.28 |
association | C_lazy | N_depressed | 0.18 | 0.01 | 0.22 | 0.15 | 0.09 | 0.01 | 0.22 | 0.33 |
association | C_lazy | N_relaxed | 0.07 | 0.00 | 0.22 | -0.01 | 0.91 | 0.00 | 0.19 | -0.26 |
association | C_lazy | N_worried | 0.04 | 0.00 | 0.21 | 0.16 | 0.25 | 0.00 | 0.21 | 0.03 |
association | C_reliable | A_kind | 0.31 | 0.01 | 0.22 | -0.37 | 1.50 | -0.01 | 0.24 | -0.19 |
association | C_reliable | A_rude | -0.13 | -0.02 | 0.21 | -0.14 | 2.61 | -0.04 | 0.22 | -0.46 |
association | C_reliable | C_lazy | 0.31 | 0.00 | 0.21 | -0.03 | 0.27 | 0.00 | 0.22 | -0.09 |
association | C_reliable | C_reliable | 0.68 | 0.03 | 0.21 | -0.08 | 0.70 | 0.05 | 0.22 | -0.21 |
association | C_reliable | E_outgoing | 0.40 | -0.01 | 0.21 | -0.12 | 1.03 | 0.02 | 0.21 | -0.46 |
association | C_reliable | E_quiet | -0.43 | 0.00 | 0.20 | 0.13 | 1.23 | -0.01 | 0.20 | -0.25 |
association | C_reliable | N_depressed | -0.15 | -0.02 | 0.21 | -0.13 | 0.30 | -0.03 | 0.21 | 0.26 |
association | C_reliable | N_relaxed | 0.55 | 0.01 | 0.22 | 0.01 | -0.23 | 0.04 | 0.20 | 0.21 |
association | C_reliable | N_worried | 0.38 | -0.02 | 0.21 | -0.09 | -0.16 | -0.04 | 0.22 | 0.06 |
association | E_outgoing | A_kind | 0.23 | 0.03 | 0.21 | -0.12 | -0.19 | 0.01 | 0.22 | -0.13 |
association | E_outgoing | A_rude | 0.38 | -0.01 | 0.22 | 0.07 | 0.97 | -0.01 | 0.21 | 0.38 |
association | E_outgoing | C_lazy | 0.01 | 0.02 | 0.20 | -0.03 | 1.08 | 0.04 | 0.20 | -0.51 |
association | E_outgoing | C_reliable | 0.29 | 0.00 | 0.22 | -0.22 | 0.25 | 0.00 | 0.22 | 0.11 |
association | E_outgoing | E_outgoing | 0.19 | 0.02 | 0.21 | -0.06 | 0.57 | 0.00 | 0.20 | -0.36 |
association | E_outgoing | E_quiet | 0.41 | -0.02 | 0.20 | 0.00 | 0.95 | -0.01 | 0.19 | 0.79 |
association | E_outgoing | N_depressed | 0.34 | -0.04 | 0.20 | 0.11 | 0.33 | -0.01 | 0.22 | 0.49 |
association | E_outgoing | N_relaxed | 1.03 | 0.03 | 0.22 | -0.32 | 0.47 | 0.04 | 0.21 | -0.15 |
association | E_outgoing | N_worried | 0.63 | -0.05 | 0.23 | 0.21 | 0.13 | -0.05 | 0.21 | 0.31 |
association | E_quiet | A_kind | 0.30 | 0.00 | 0.21 | 0.22 | 0.55 | -0.01 | 0.22 | -0.06 |
association | E_quiet | A_rude | 0.31 | 0.01 | 0.22 | -0.14 | 0.22 | -0.01 | 0.21 | -0.20 |
association | E_quiet | C_lazy | 0.08 | -0.02 | 0.22 | -0.12 | 0.62 | -0.02 | 0.21 | 0.14 |
association | E_quiet | C_reliable | 0.36 | 0.00 | 0.22 | 0.21 | 0.78 | 0.00 | 0.20 | 0.38 |
association | E_quiet | E_outgoing | 0.35 | -0.01 | 0.21 | 0.26 | 1.65 | 0.00 | 0.18 | 0.73 |
association | E_quiet | E_quiet | 0.15 | 0.00 | 0.20 | -0.01 | 0.16 | 0.02 | 0.20 | -0.23 |
association | E_quiet | N_depressed | 0.95 | 0.02 | 0.21 | -0.64 | -0.06 | -0.01 | 0.22 | -0.48 |
association | E_quiet | N_relaxed | 0.89 | -0.01 | 0.22 | 0.28 | 0.34 | -0.02 | 0.22 | 0.25 |
association | E_quiet | N_worried | 0.40 | 0.04 | 0.22 | -0.22 | 0.54 | 0.04 | 0.20 | -0.29 |
association | N_depressed | A_kind | 0.79 | 0.00 | 0.21 | 0.16 | 0.54 | -0.02 | 0.22 | 0.08 |
association | N_depressed | A_rude | 1.45 | 0.00 | 0.22 | 0.67 | 2.95 | 0.01 | 0.22 | 1.00 |
association | N_depressed | C_lazy | 0.59 | 0.00 | 0.22 | 0.06 | 0.70 | -0.02 | 0.20 | 0.10 |
association | N_depressed | C_reliable | 1.16 | -0.02 | 0.22 | 0.13 | 0.19 | -0.02 | 0.21 | 0.27 |
association | N_depressed | E_outgoing | 0.24 | -0.01 | 0.22 | 0.14 | 0.84 | -0.01 | 0.22 | 0.47 |
association | N_depressed | E_quiet | 0.47 | 0.02 | 0.22 | -0.27 | 0.95 | 0.02 | 0.22 | -0.16 |
association | N_depressed | N_depressed | -0.25 | 0.10 | 0.24 | 0.13 | 0.22 | 0.12 | 0.24 | 0.34 |
association | N_depressed | N_relaxed | 0.47 | -0.05 | 0.21 | 0.28 | 0.30 | -0.09 | 0.21 | 0.09 |
association | N_depressed | N_worried | -0.60 | 0.08 | 0.23 | -0.10 | -0.39 | 0.07 | 0.21 | 0.00 |
association | N_relaxed | A_kind | 0.07 | 0.03 | 0.21 | 0.01 | 0.11 | 0.01 | 0.22 | -0.47 |
association | N_relaxed | A_rude | 0.06 | -0.01 | 0.21 | -0.07 | 0.65 | 0.02 | 0.22 | 0.29 |
association | N_relaxed | C_lazy | 0.44 | 0.06 | 0.21 | 0.07 | 0.63 | 0.04 | 0.21 | 0.30 |
association | N_relaxed | C_reliable | 0.39 | 0.01 | 0.22 | -0.10 | 0.30 | 0.02 | 0.20 | -0.10 |
association | N_relaxed | E_outgoing | 0.44 | 0.03 | 0.21 | -0.12 | 2.35 | 0.01 | 0.22 | -0.52 |
association | N_relaxed | E_quiet | 0.77 | -0.04 | 0.20 | 0.25 | 0.58 | 0.00 | 0.23 | 0.26 |
association | N_relaxed | N_depressed | -0.10 | -0.09 | 0.21 | 0.15 | -0.13 | -0.05 | 0.21 | 0.34 |
association | N_relaxed | N_relaxed | -0.29 | 0.08 | 0.22 | -0.13 | 0.12 | 0.06 | 0.20 | -0.23 |
association | N_relaxed | N_worried | 0.60 | -0.12 | 0.21 | 0.36 | -0.10 | -0.06 | 0.21 | 0.39 |
association | N_worried | A_kind | 0.57 | -0.03 | 0.22 | 0.23 | -0.02 | -0.04 | 0.22 | 0.25 |
association | N_worried | A_rude | 0.21 | 0.00 | 0.22 | 0.01 | -0.02 | 0.02 | 0.22 | -0.04 |
association | N_worried | C_lazy | 0.33 | -0.06 | 0.22 | -0.06 | -0.10 | -0.03 | 0.21 | 0.10 |
association | N_worried | C_reliable | 0.96 | -0.01 | 0.21 | 0.12 | 0.29 | 0.00 | 0.21 | 0.06 |
association | N_worried | E_outgoing | 0.26 | -0.05 | 0.21 | 0.10 | 0.85 | -0.04 | 0.22 | 0.11 |
association | N_worried | E_quiet | 0.14 | 0.04 | 0.20 | -0.21 | 0.73 | 0.05 | 0.24 | 0.00 |
association | N_worried | N_depressed | 0.25 | 0.11 | 0.23 | -0.17 | 0.66 | 0.07 | 0.23 | -0.45 |
association | N_worried | N_relaxed | 0.40 | -0.12 | 0.24 | 0.22 | 0.75 | -0.09 | 0.22 | 0.53 |
association | N_worried | N_worried | 0.43 | 0.16 | 0.25 | -0.33 | 0.46 | 0.16 | 0.23 | -0.26 |
gimme | A_kind | A_kind | 5.02 | 0.00 | 0.31 | -0.89 | 2.75 | 0.02 | 0.30 | -1.20 |
gimme | A_kind | A_rude | 82.37 | -0.01 | 0.23 | -7.55 | 11.81 | 0.04 | 0.19 | 2.90 |
gimme | A_kind | C_lazy | 29.85 | 0.01 | 0.19 | -0.63 | 11.38 | 0.00 | 0.19 | 0.29 |
gimme | A_kind | C_reliable | 12.52 | 0.00 | 0.17 | 0.95 | 25.21 | 0.00 | 0.19 | -1.29 |
gimme | A_kind | E_outgoing | 11.90 | 0.01 | 0.14 | 1.09 | 33.01 | 0.03 | 0.26 | -3.40 |
gimme | A_kind | E_quiet | 21.95 | -0.02 | 0.13 | -2.61 | 12.03 | 0.00 | 0.20 | -0.83 |
gimme | A_kind | N_depressed | 25.35 | -0.01 | 0.17 | 1.64 | 26.01 | -0.01 | 0.22 | -0.15 |
gimme | A_kind | N_relaxed | 15.01 | 0.01 | 0.17 | 1.90 | 10.54 | -0.01 | 0.14 | -1.17 |
gimme | A_kind | N_worried | 56.81 | 0.00 | 0.17 | -3.88 | 8.03 | -0.03 | 0.18 | -0.97 |
gimme | A_rude | A_kind | 10.53 | 0.00 | 0.17 | 0.48 | 16.08 | -0.01 | 0.17 | -0.88 |
gimme | A_rude | A_rude | 302.67 | 0.00 | 1.85 | 17.26 | 0.97 | 0.01 | 0.26 | 0.18 |
gimme | A_rude | C_lazy | 16.36 | 0.00 | 0.18 | 1.29 | 13.22 | 0.03 | 0.17 | 1.44 |
gimme | A_rude | C_reliable | 39.40 | -0.01 | 0.19 | -3.99 | 10.97 | -0.02 | 0.20 | -1.55 |
gimme | A_rude | E_outgoing | 15.37 | -0.02 | 0.17 | -2.50 | 14.38 | 0.01 | 0.19 | 1.56 |
gimme | A_rude | E_quiet | 15.90 | -0.02 | 0.16 | -0.15 | 18.28 | -0.01 | 0.13 | -0.98 |
gimme | A_rude | N_depressed | 21.41 | 0.01 | 0.21 | 0.46 | 11.54 | 0.01 | 0.15 | 0.46 |
gimme | A_rude | N_relaxed | 17.59 | -0.02 | 0.17 | -2.19 | 16.34 | 0.02 | 0.12 | 2.45 |
gimme | A_rude | N_worried | 17.94 | 0.00 | 0.16 | 0.52 | 17.21 | 0.04 | 0.17 | 3.55 |
gimme | C_lazy | A_kind | 13.32 | -0.02 | 0.18 | -0.42 | 15.62 | 0.02 | 0.15 | 2.33 |
gimme | C_lazy | A_rude | 16.87 | 0.00 | 0.15 | 1.30 | 18.24 | 0.02 | 0.16 | 3.02 |
gimme | C_lazy | C_lazy | 1.89 | 0.05 | 0.28 | -0.21 | 2.66 | -0.02 | 0.30 | 0.14 |
gimme | C_lazy | C_reliable | 10.41 | 0.02 | 0.16 | 1.59 | 28.21 | 0.00 | 0.20 | -2.87 |
gimme | C_lazy | E_outgoing | 20.70 | 0.00 | 0.21 | -1.07 | 18.29 | -0.02 | 0.16 | -2.22 |
gimme | C_lazy | E_quiet | 22.57 | 0.00 | 0.20 | -0.86 | 12.80 | -0.01 | 0.15 | -2.37 |
gimme | C_lazy | N_depressed | 10.55 | 0.02 | 0.16 | 1.29 | 41.59 | 0.01 | 0.09 | 3.28 |
gimme | C_lazy | N_relaxed | 25.25 | 0.01 | 0.18 | -0.96 | 16.22 | 0.04 | 0.17 | 1.44 |
gimme | C_lazy | N_worried | 13.32 | -0.01 | 0.19 | 1.58 | 17.85 | 0.00 | 0.15 | -0.23 |
gimme | C_reliable | A_kind | 72.38 | 0.01 | 0.20 | -4.57 | 13.26 | 0.00 | 0.13 | -0.75 |
gimme | C_reliable | A_rude | 22.12 | -0.02 | 0.22 | -1.48 | 17.40 | 0.01 | 0.12 | 1.36 |
gimme | C_reliable | C_lazy | 105.55 | -0.01 | 0.21 | 7.36 | 17.73 | 0.00 | 0.14 | -1.78 |
gimme | C_reliable | C_reliable | 20.61 | 0.01 | 0.42 | 0.52 | 29.86 | 0.05 | 0.33 | -3.85 |
gimme | C_reliable | E_outgoing | 56.47 | -0.02 | 0.34 | -3.45 | 17.04 | 0.01 | 0.12 | 1.52 |
gimme | C_reliable | E_quiet | 53.68 | 0.01 | 0.29 | -4.56 | 14.51 | 0.00 | 0.13 | -0.23 |
gimme | C_reliable | N_depressed | 20.78 | 0.01 | 0.23 | -1.13 | 11.32 | 0.01 | 0.14 | 1.33 |
gimme | C_reliable | N_relaxed | 49.69 | 0.02 | 0.23 | -1.28 | 21.29 | 0.00 | 0.15 | 0.01 |
gimme | C_reliable | N_worried | 15.92 | 0.00 | 0.23 | -1.64 | 27.64 | 0.01 | 0.17 | -0.15 |
gimme | E_outgoing | A_kind | 32.37 | -0.02 | 0.19 | -3.80 | 10.54 | 0.00 | 0.14 | -1.01 |
gimme | E_outgoing | A_rude | 119.97 | -0.01 | 0.25 | 8.49 | 15.85 | 0.00 | 0.10 | -1.84 |
gimme | E_outgoing | C_lazy | 20.40 | -0.01 | 0.19 | -0.31 | 37.93 | -0.04 | 0.17 | 1.41 |
gimme | E_outgoing | C_reliable | 25.24 | 0.00 | 0.16 | 2.34 | 39.90 | 0.01 | 0.10 | 4.37 |
gimme | E_outgoing | E_outgoing | 250.79 | 0.00 | 0.86 | -14.97 | 37.03 | 0.01 | 0.39 | -3.61 |
gimme | E_outgoing | E_quiet | 16.17 | -0.01 | 0.16 | -1.12 | 64.50 | 0.02 | 0.23 | -5.03 |
gimme | E_outgoing | N_depressed | 25.77 | 0.01 | 0.16 | 3.63 | 13.32 | 0.01 | 0.13 | 0.89 |
gimme | E_outgoing | N_relaxed | 83.71 | -0.01 | 0.27 | 7.05 | 36.79 | 0.00 | 0.17 | 2.48 |
gimme | E_outgoing | N_worried | 281.66 | 0.00 | 0.64 | -16.35 | 26.21 | 0.02 | 0.13 | 2.81 |
gimme | E_quiet | A_kind | 16.30 | 0.01 | 0.12 | 0.46 | 137.03 | 0.00 | 23.81 | 11.75 |
gimme | E_quiet | A_rude | 31.68 | 0.01 | 0.15 | 3.08 | 136.99 | 0.00 | 7.47 | 11.75 |
gimme | E_quiet | C_lazy | 13.79 | 0.01 | 0.14 | 0.87 | 137.04 | 0.00 | 35.94 | -11.75 |
gimme | E_quiet | C_reliable | 14.05 | -0.02 | 0.13 | -1.82 | 137.03 | 0.01 | 29.53 | -11.75 |
gimme | E_quiet | E_outgoing | 44.09 | -0.01 | 0.13 | -3.52 | 137.03 | 0.01 | 22.18 | -11.75 |
gimme | E_quiet | E_quiet | 5.77 | -0.04 | 0.31 | -1.39 | 134.14 | 0.00 | 2.77 | -11.57 |
gimme | E_quiet | N_depressed | 22.34 | -0.02 | 0.16 | 0.65 | 16.56 | 0.01 | 0.17 | 2.63 |
gimme | E_quiet | N_relaxed | 12.11 | -0.01 | 0.15 | -1.11 | 137.00 | 0.01 | 11.88 | 11.75 |
gimme | E_quiet | N_worried | 13.98 | 0.02 | 0.14 | 1.42 | 137.03 | -0.01 | 21.98 | -11.75 |
gimme | N_depressed | A_kind | 10.26 | -0.01 | 0.16 | -0.27 | 42.44 | -0.01 | 0.15 | 3.57 |
gimme | N_depressed | A_rude | 17.45 | -0.01 | 0.16 | -2.41 | 19.55 | 0.00 | 0.16 | 1.86 |
gimme | N_depressed | C_lazy | 30.72 | 0.01 | 0.19 | 3.26 | 48.65 | 0.03 | 0.27 | -4.22 |
gimme | N_depressed | C_reliable | 13.07 | 0.00 | 0.16 | 0.90 | 47.91 | 0.00 | 0.13 | 5.22 |
gimme | N_depressed | E_outgoing | 22.81 | -0.01 | 0.16 | -3.26 | 12.95 | 0.03 | 0.15 | 2.00 |
gimme | N_depressed | E_quiet | 34.11 | -0.01 | 0.13 | -3.48 | 23.14 | -0.03 | 0.12 | -4.17 |
gimme | N_depressed | N_depressed | 2.96 | 0.09 | 0.31 | -0.46 | 1.57 | 0.08 | 0.30 | -0.03 |
gimme | N_depressed | N_relaxed | 31.39 | -0.01 | 0.23 | -2.97 | 61.45 | 0.02 | 0.18 | -5.37 |
gimme | N_depressed | N_worried | 23.54 | 0.01 | 0.18 | 0.69 | 21.27 | 0.01 | 0.21 | -2.94 |
gimme | N_relaxed | A_kind | 15.88 | 0.00 | 0.14 | -0.26 | 27.65 | 0.00 | 0.16 | -3.22 |
gimme | N_relaxed | A_rude | 14.55 | -0.02 | 0.12 | -2.24 | 12.42 | -0.01 | 0.10 | -1.70 |
gimme | N_relaxed | C_lazy | 13.81 | 0.00 | 0.14 | -0.54 | 55.21 | -0.01 | 0.19 | 5.26 |
gimme | N_relaxed | C_reliable | 20.77 | 0.00 | 0.14 | 0.37 | 12.07 | 0.03 | 0.13 | 3.35 |
gimme | N_relaxed | E_outgoing | 17.58 | 0.00 | 0.15 | -0.90 | 46.90 | 0.00 | 0.12 | 4.50 |
gimme | N_relaxed | E_quiet | 12.52 | 0.01 | 0.15 | 1.38 | 17.99 | 0.01 | 0.17 | 0.07 |
gimme | N_relaxed | N_depressed | 19.82 | -0.01 | 0.13 | -0.89 | 31.87 | 0.01 | 0.25 | -3.79 |
gimme | N_relaxed | N_relaxed | 7.76 | 0.00 | 0.28 | 1.05 | 1.32 | 0.02 | 0.24 | -0.02 |
gimme | N_relaxed | N_worried | 37.74 | -0.02 | 0.26 | 3.34 | 8.96 | -0.02 | 0.15 | -1.54 |
gimme | N_worried | A_kind | 29.43 | 0.00 | 0.20 | -3.10 | 21.64 | -0.01 | 0.12 | -1.01 |
gimme | N_worried | A_rude | 17.51 | 0.01 | 0.16 | -0.72 | 16.78 | 0.00 | 0.16 | -2.22 |
gimme | N_worried | C_lazy | 26.32 | 0.00 | 0.18 | 2.62 | 15.17 | 0.02 | 0.16 | 1.72 |
gimme | N_worried | C_reliable | 44.45 | -0.02 | 0.23 | -3.30 | 19.51 | -0.02 | 0.15 | -1.60 |
gimme | N_worried | E_outgoing | 21.52 | 0.01 | 0.19 | -0.01 | 18.65 | -0.02 | 0.19 | 0.35 |
gimme | N_worried | E_quiet | 15.86 | 0.00 | 0.15 | -0.18 | 21.32 | -0.02 | 0.17 | 0.56 |
gimme | N_worried | N_depressed | 45.06 | 0.01 | 0.18 | 4.28 | 22.70 | 0.00 | 0.14 | 0.01 |
gimme | N_worried | N_relaxed | 79.93 | -0.02 | 0.27 | -7.02 | 23.60 | 0.03 | 0.19 | -1.74 |
gimme | N_worried | N_worried | 68.57 | 0.11 | 0.50 | -5.39 | 117.23 | 0.13 | 1.24 | 10.46 |
mlVAR_EB | A_kind | A_kind | 0.93 | 0.03 | 0.03 | 0.03 | 1.89 | 0.11 | 0.06 | 0.81 |
mlVAR_EB | A_kind | A_rude | 2.78 | -0.01 | 0.03 | -0.19 | 2.08 | 0.00 | 0.00 | -0.50 |
mlVAR_EB | A_kind | C_lazy | 3.04 | 0.01 | 0.01 | 0.03 | 1.35 | 0.01 | 0.03 | 0.29 |
mlVAR_EB | A_kind | C_reliable | 2.28 | 0.03 | 0.01 | 0.13 | 1.61 | -0.01 | 0.00 | 0.06 |
mlVAR_EB | A_kind | E_outgoing | 1.09 | 0.01 | 0.00 | 0.18 | 6.16 | -0.01 | 0.01 | 1.32 |
mlVAR_EB | A_kind | E_quiet | NaN | 0.00 | 0.00 | NaN | 0.85 | 0.00 | 0.01 | -0.34 |
mlVAR_EB | A_kind | N_depressed | 2.52 | 0.03 | 0.01 | -0.49 | 5.79 | -0.04 | 0.02 | -1.13 |
mlVAR_EB | A_kind | N_relaxed | 1.83 | 0.01 | 0.01 | 0.31 | 0.49 | -0.02 | 0.00 | 0.10 |
mlVAR_EB | A_kind | N_worried | 2.11 | -0.02 | 0.00 | -0.29 | 2.36 | -0.05 | 0.00 | 0.44 |
mlVAR_EB | A_rude | A_kind | 4.14 | 0.00 | 0.04 | -0.55 | 1.76 | 0.01 | 0.05 | 0.30 |
mlVAR_EB | A_rude | A_rude | 3.76 | 0.04 | 0.07 | 0.30 | 2.14 | 0.03 | 0.06 | 0.90 |
mlVAR_EB | A_rude | C_lazy | 1.30 | -0.01 | 0.02 | -0.27 | 5.77 | 0.02 | 0.03 | -0.91 |
mlVAR_EB | A_rude | C_reliable | 2.35 | -0.01 | 0.01 | 0.07 | 0.74 | -0.01 | 0.01 | 0.07 |
mlVAR_EB | A_rude | E_outgoing | 3.23 | 0.00 | 0.01 | -0.42 | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | A_rude | E_quiet | 1.13 | 0.01 | 0.00 | 0.38 | NaN | -0.01 | 0.00 | NaN |
mlVAR_EB | A_rude | N_depressed | 3.49 | -0.02 | 0.01 | 0.07 | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | A_rude | N_relaxed | 2.55 | 0.01 | 0.00 | -0.37 | NaN | 0.01 | 0.00 | NaN |
mlVAR_EB | A_rude | N_worried | 2.70 | 0.01 | 0.01 | 0.42 | 2.42 | 0.02 | 0.03 | -0.07 |
mlVAR_EB | C_lazy | A_kind | 3.28 | -0.03 | 0.01 | -0.64 | 3.27 | 0.00 | 0.06 | 0.85 |
mlVAR_EB | C_lazy | A_rude | 2.29 | 0.02 | 0.03 | -0.26 | 1.51 | 0.01 | 0.02 | -0.49 |
mlVAR_EB | C_lazy | C_lazy | 2.59 | 0.04 | 0.05 | 0.44 | 1.06 | 0.05 | 0.06 | 0.18 |
mlVAR_EB | C_lazy | C_reliable | NaN | 0.01 | 0.00 | NaN | NaN | 0.02 | 0.00 | NaN |
mlVAR_EB | C_lazy | E_outgoing | 1.85 | 0.01 | 0.02 | -0.42 | NaN | 0.02 | 0.00 | NaN |
mlVAR_EB | C_lazy | E_quiet | 0.71 | 0.00 | 0.00 | 0.15 | NaN | -0.01 | 0.00 | NaN |
mlVAR_EB | C_lazy | N_depressed | 1.93 | 0.03 | 0.02 | 0.05 | 2.44 | 0.04 | 0.02 | 0.19 |
mlVAR_EB | C_lazy | N_relaxed | 1.68 | 0.05 | 0.00 | 0.25 | 3.05 | 0.01 | 0.01 | 0.38 |
mlVAR_EB | C_lazy | N_worried | 2.59 | -0.04 | 0.02 | -0.52 | 2.68 | -0.04 | 0.02 | -0.32 |
mlVAR_EB | C_reliable | A_kind | 1.65 | 0.03 | 0.03 | 0.35 | 2.38 | 0.04 | 0.04 | 0.45 |
mlVAR_EB | C_reliable | A_rude | 1.41 | -0.02 | 0.01 | 0.05 | 2.69 | 0.02 | 0.02 | 0.59 |
mlVAR_EB | C_reliable | C_lazy | 1.32 | -0.01 | 0.01 | -0.15 | 3.32 | -0.03 | 0.00 | 0.10 |
mlVAR_EB | C_reliable | C_reliable | 2.08 | 0.02 | 0.03 | 0.47 | 1.18 | 0.05 | 0.02 | 0.10 |
mlVAR_EB | C_reliable | E_outgoing | 0.88 | 0.00 | 0.00 | 0.04 | 2.83 | -0.02 | 0.00 | 0.69 |
mlVAR_EB | C_reliable | E_quiet | NaN | 0.01 | 0.00 | NaN | 5.91 | -0.02 | 0.03 | -1.46 |
mlVAR_EB | C_reliable | N_depressed | 3.42 | -0.01 | 0.02 | 0.21 | 2.38 | -0.01 | 0.02 | -0.58 |
mlVAR_EB | C_reliable | N_relaxed | NaN | -0.01 | 0.00 | NaN | NaN | 0.01 | 0.00 | NaN |
mlVAR_EB | C_reliable | N_worried | NaN | 0.00 | 0.00 | NaN | NaN | -0.01 | 0.00 | NaN |
mlVAR_EB | E_outgoing | A_kind | NaN | -0.03 | 0.00 | NaN | 2.59 | 0.02 | 0.02 | 0.64 |
mlVAR_EB | E_outgoing | A_rude | NaN | -0.03 | 0.00 | NaN | NaN | -0.01 | 0.00 | NaN |
mlVAR_EB | E_outgoing | C_lazy | 0.83 | -0.03 | 0.02 | -0.26 | 2.15 | 0.03 | 0.01 | 0.82 |
mlVAR_EB | E_outgoing | C_reliable | 1.60 | -0.02 | 0.04 | 0.14 | 2.89 | 0.04 | 0.02 | -0.26 |
mlVAR_EB | E_outgoing | E_outgoing | 0.90 | 0.01 | 0.02 | 0.41 | 2.27 | 0.02 | 0.01 | 0.40 |
mlVAR_EB | E_outgoing | E_quiet | 1.76 | 0.01 | 0.00 | -0.43 | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | E_outgoing | N_depressed | 1.81 | 0.02 | 0.02 | -0.64 | 0.64 | -0.02 | 0.02 | -0.24 |
mlVAR_EB | E_outgoing | N_relaxed | 2.01 | 0.01 | 0.01 | -0.19 | NaN | 0.01 | 0.00 | NaN |
mlVAR_EB | E_outgoing | N_worried | 1.41 | -0.06 | 0.03 | 0.06 | 2.76 | -0.03 | 0.01 | -0.91 |
mlVAR_EB | E_quiet | A_kind | 2.11 | 0.01 | 0.03 | -0.38 | 1.30 | -0.02 | 0.00 | 0.14 |
mlVAR_EB | E_quiet | A_rude | NaN | 0.03 | 0.00 | NaN | NaN | 0.01 | 0.00 | NaN |
mlVAR_EB | E_quiet | C_lazy | 2.14 | 0.04 | 0.02 | -0.11 | 2.39 | -0.02 | 0.00 | 0.35 |
mlVAR_EB | E_quiet | C_reliable | 1.14 | 0.00 | 0.02 | -0.18 | 3.05 | -0.03 | 0.00 | 0.52 |
mlVAR_EB | E_quiet | E_outgoing | NaN | -0.01 | 0.00 | NaN | 0.84 | 0.01 | 0.01 | -0.10 |
mlVAR_EB | E_quiet | E_quiet | 2.80 | -0.01 | 0.00 | 0.35 | 1.14 | 0.03 | 0.01 | 0.18 |
mlVAR_EB | E_quiet | N_depressed | 1.88 | 0.00 | 0.01 | -0.04 | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | E_quiet | N_relaxed | 2.37 | -0.01 | 0.01 | -0.42 | 0.97 | 0.04 | 0.05 | -0.35 |
mlVAR_EB | E_quiet | N_worried | 1.18 | 0.04 | 0.02 | 0.07 | 0.70 | 0.06 | 0.04 | 0.38 |
mlVAR_EB | N_depressed | A_kind | NaN | 0.01 | 0.00 | NaN | 2.74 | 0.01 | 0.04 | -0.16 |
mlVAR_EB | N_depressed | A_rude | 3.53 | 0.03 | 0.02 | 0.71 | NaN | 0.03 | 0.00 | NaN |
mlVAR_EB | N_depressed | C_lazy | 2.80 | 0.01 | 0.00 | 0.18 | 4.05 | -0.01 | 0.01 | -0.98 |
mlVAR_EB | N_depressed | C_reliable | 2.22 | -0.01 | 0.02 | 0.00 | 2.03 | -0.03 | 0.01 | 0.38 |
mlVAR_EB | N_depressed | E_outgoing | NaN | 0.01 | 0.00 | NaN | 2.04 | 0.00 | 0.02 | 0.33 |
mlVAR_EB | N_depressed | E_quiet | NaN | 0.00 | 0.00 | NaN | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | N_depressed | N_depressed | 3.33 | 0.07 | 0.08 | 1.08 | 2.40 | 0.11 | 0.10 | 0.76 |
mlVAR_EB | N_depressed | N_relaxed | NaN | -0.02 | 0.00 | NaN | NaN | 0.00 | 0.00 | NaN |
mlVAR_EB | N_depressed | N_worried | 1.52 | 0.04 | 0.03 | 0.47 | 1.54 | 0.02 | 0.02 | 0.45 |
mlVAR_EB | N_relaxed | A_kind | 3.64 | 0.00 | 0.01 | 0.36 | 1.70 | 0.02 | 0.02 | -0.22 |
mlVAR_EB | N_relaxed | A_rude | 2.53 | -0.05 | 0.04 | -0.35 | NaN | -0.02 | 0.00 | NaN |
mlVAR_EB | N_relaxed | C_lazy | 1.34 | 0.00 | 0.03 | -0.02 | 3.04 | 0.03 | 0.00 | 0.64 |
mlVAR_EB | N_relaxed | C_reliable | 1.91 | 0.00 | 0.04 | 0.16 | NaN | 0.02 | 0.00 | NaN |
mlVAR_EB | N_relaxed | E_outgoing | 1.31 | -0.02 | 0.02 | 0.07 | 0.89 | -0.03 | 0.01 | -0.61 |
mlVAR_EB | N_relaxed | E_quiet | 0.54 | 0.00 | 0.01 | 0.02 | 0.26 | -0.03 | 0.02 | -0.27 |
mlVAR_EB | N_relaxed | N_depressed | NaN | -0.01 | 0.00 | NaN | 3.16 | -0.05 | 0.02 | -0.69 |
mlVAR_EB | N_relaxed | N_relaxed | 2.03 | 0.02 | 0.01 | 0.27 | 3.92 | 0.04 | 0.03 | 0.89 |
mlVAR_EB | N_relaxed | N_worried | 1.97 | -0.10 | 0.05 | -0.79 | 1.28 | -0.08 | 0.01 | -0.76 |
mlVAR_EB | N_worried | A_kind | NaN | 0.02 | 0.00 | NaN | 1.49 | 0.01 | 0.02 | 0.36 |
mlVAR_EB | N_worried | A_rude | 3.58 | 0.04 | 0.04 | 0.25 | 0.61 | 0.05 | 0.00 | 0.51 |
mlVAR_EB | N_worried | C_lazy | 2.09 | 0.02 | 0.02 | 0.38 | 2.37 | 0.00 | 0.01 | -0.28 |
mlVAR_EB | N_worried | C_reliable | 1.74 | 0.01 | 0.05 | 0.03 | 0.37 | -0.03 | 0.03 | 0.15 |
mlVAR_EB | N_worried | E_outgoing | 1.47 | 0.00 | 0.02 | 0.24 | 1.84 | 0.04 | 0.01 | 0.90 |
mlVAR_EB | N_worried | E_quiet | NaN | 0.01 | 0.00 | NaN | 2.47 | 0.02 | 0.02 | -0.72 |
mlVAR_EB | N_worried | N_depressed | 2.68 | 0.02 | 0.02 | 0.73 | 2.27 | -0.01 | 0.02 | 0.54 |
mlVAR_EB | N_worried | N_relaxed | 1.93 | -0.05 | 0.00 | -0.33 | 2.69 | -0.01 | 0.03 | -0.42 |
mlVAR_EB | N_worried | N_worried | 1.89 | 0.11 | 0.10 | 0.71 | 2.75 | 0.18 | 0.07 | 0.81 |
scaled | A_kind | A_kind | 12.35 | -0.01 | 0.13 | 0.00 | 12.43 | -0.03 | 0.15 | -2.22 |
scaled | A_kind | A_rude | 9.75 | 0.06 | 0.22 | 0.22 | 9.20 | 0.09 | 0.22 | 0.14 |
scaled | A_kind | C_lazy | 25.51 | 0.00 | 0.12 | 0.38 | 14.46 | 0.06 | 0.18 | 3.46 |
scaled | A_kind | C_reliable | 20.86 | 0.04 | 0.16 | 1.35 | 10.69 | 0.04 | 0.20 | 1.34 |
scaled | A_kind | E_outgoing | 43.17 | -0.05 | 0.12 | -3.27 | 20.26 | -0.02 | 0.15 | -2.49 |
scaled | A_kind | E_quiet | 54.46 | 0.02 | 0.09 | 5.68 | 16.62 | 0.03 | 0.16 | 1.43 |
scaled | A_kind | N_depressed | 12.81 | -0.06 | 0.19 | -2.51 | 7.92 | 0.01 | 0.24 | -0.20 |
scaled | A_kind | N_relaxed | 23.84 | -0.01 | 0.13 | 0.11 | 17.42 | -0.07 | 0.14 | -2.26 |
scaled | A_kind | N_worried | 29.90 | 0.00 | 0.11 | -1.31 | 15.10 | 0.06 | 0.16 | 2.91 |
scaled | A_rude | A_kind | 16.90 | -0.01 | 0.10 | -1.83 | 12.66 | 0.05 | 0.18 | 2.42 |
scaled | A_rude | A_rude | 10.60 | -0.01 | 0.15 | 0.19 | 12.66 | -0.01 | 0.16 | -0.60 |
scaled | A_rude | C_lazy | 60.80 | -0.01 | 0.09 | -4.02 | 13.85 | 0.00 | 0.14 | 0.01 |
scaled | A_rude | C_reliable | 30.99 | 0.00 | 0.12 | 0.61 | 25.42 | 0.01 | 0.15 | 1.09 |
scaled | A_rude | E_outgoing | 118.68 | 0.01 | 0.07 | 5.80 | 23.38 | 0.00 | 0.15 | -0.44 |
scaled | A_rude | E_quiet | 69.71 | 0.00 | 0.09 | -0.81 | 22.94 | 0.01 | 0.13 | 0.19 |
scaled | A_rude | N_depressed | 22.14 | 0.00 | 0.14 | -0.09 | 17.86 | 0.02 | 0.16 | 1.65 |
scaled | A_rude | N_relaxed | 48.61 | 0.00 | 0.07 | 3.44 | 37.12 | 0.00 | 0.11 | 3.68 |
scaled | A_rude | N_worried | 47.35 | 0.00 | 0.08 | 3.44 | 19.86 | -0.04 | 0.16 | -0.96 |
scaled | C_lazy | A_kind | 11.66 | -0.01 | 0.15 | -0.12 | 11.86 | -0.04 | 0.19 | -1.31 |
scaled | C_lazy | A_rude | 6.57 | -0.06 | 0.24 | -0.57 | 6.67 | -0.04 | 0.24 | 0.06 |
scaled | C_lazy | C_lazy | 9.87 | 0.00 | 0.10 | -0.74 | 12.89 | 0.00 | 0.14 | 1.39 |
scaled | C_lazy | C_reliable | 14.18 | 0.04 | 0.15 | 1.28 | 11.20 | 0.00 | 0.18 | 0.67 |
scaled | C_lazy | E_outgoing | 26.15 | 0.04 | 0.14 | 2.70 | 15.35 | -0.03 | 0.16 | -2.79 |
scaled | C_lazy | E_quiet | 26.77 | 0.00 | 0.13 | 0.29 | 15.97 | -0.02 | 0.17 | -0.70 |
scaled | C_lazy | N_depressed | 8.78 | 0.00 | 0.21 | 0.01 | 8.90 | -0.02 | 0.22 | -0.38 |
scaled | C_lazy | N_relaxed | 16.04 | 0.00 | 0.16 | -0.03 | 17.06 | 0.04 | 0.17 | -0.17 |
scaled | C_lazy | N_worried | 17.81 | 0.00 | 0.14 | 0.41 | 9.89 | 0.07 | 0.22 | 1.16 |
scaled | C_reliable | A_kind | 12.24 | -0.04 | 0.16 | -1.02 | 11.59 | -0.02 | 0.19 | -1.35 |
scaled | C_reliable | A_rude | 9.88 | -0.03 | 0.21 | -0.58 | 8.34 | -0.12 | 0.23 | -1.20 |
scaled | C_reliable | C_lazy | 26.77 | 0.02 | 0.12 | 2.92 | 16.12 | -0.04 | 0.18 | -3.23 |
scaled | C_reliable | C_reliable | 14.35 | -0.01 | 0.12 | -1.08 | 6.98 | 0.00 | 0.17 | -0.68 |
scaled | C_reliable | E_outgoing | 52.94 | 0.03 | 0.11 | 3.31 | 38.15 | 0.02 | 0.11 | 5.03 |
scaled | C_reliable | E_quiet | 38.76 | 0.01 | 0.12 | 0.59 | 18.25 | -0.04 | 0.15 | -3.64 |
scaled | C_reliable | N_depressed | 14.44 | -0.04 | 0.18 | -0.14 | 11.44 | 0.00 | 0.20 | 0.66 |
scaled | C_reliable | N_relaxed | 27.33 | -0.01 | 0.14 | -0.69 | 28.24 | 0.08 | 0.13 | 3.05 |
scaled | C_reliable | N_worried | 12.73 | -0.01 | 0.14 | -0.24 | 15.21 | -0.11 | 0.19 | -2.66 |
scaled | E_outgoing | A_kind | 14.35 | 0.05 | 0.15 | 1.02 | 8.69 | 0.03 | 0.19 | 1.07 |
scaled | E_outgoing | A_rude | 5.91 | -0.03 | 0.25 | -0.59 | 4.27 | -0.08 | 0.25 | -0.30 |
scaled | E_outgoing | C_lazy | 25.24 | -0.02 | 0.15 | -0.94 | 16.43 | 0.01 | 0.18 | -0.64 |
scaled | E_outgoing | C_reliable | 16.42 | -0.03 | 0.17 | -1.81 | 7.41 | 0.04 | 0.24 | 0.59 |
scaled | E_outgoing | E_outgoing | 24.38 | 0.01 | 0.10 | 2.69 | 23.61 | -0.01 | 0.12 | -2.42 |
scaled | E_outgoing | E_quiet | 37.41 | -0.02 | 0.10 | -5.38 | 25.74 | 0.00 | 0.17 | -0.33 |
scaled | E_outgoing | N_depressed | 10.59 | 0.01 | 0.20 | -0.03 | 7.10 | 0.05 | 0.24 | 0.84 |
scaled | E_outgoing | N_relaxed | 16.71 | -0.02 | 0.17 | -0.56 | 11.67 | 0.10 | 0.18 | 2.59 |
scaled | E_outgoing | N_worried | 12.17 | 0.01 | 0.16 | 1.10 | 7.30 | 0.01 | 0.23 | -1.04 |
scaled | E_quiet | A_kind | 12.60 | 0.04 | 0.16 | 0.14 | 12.97 | 0.02 | 0.18 | 0.56 |
scaled | E_quiet | A_rude | 7.34 | 0.00 | 0.23 | 0.09 | 5.67 | -0.07 | 0.25 | -0.29 |
scaled | E_quiet | C_lazy | 18.29 | -0.03 | 0.16 | -1.52 | 14.51 | 0.00 | 0.17 | -0.05 |
scaled | E_quiet | C_reliable | 15.45 | -0.03 | 0.16 | -1.05 | 7.11 | 0.06 | 0.25 | 1.37 |
scaled | E_quiet | E_outgoing | 34.55 | 0.06 | 0.12 | 4.40 | 13.66 | 0.00 | 0.16 | -0.28 |
scaled | E_quiet | E_quiet | 21.47 | -0.02 | 0.12 | -2.50 | 12.94 | -0.02 | 0.14 | -2.25 |
scaled | E_quiet | N_depressed | 13.51 | 0.05 | 0.19 | 1.07 | 8.94 | 0.01 | 0.23 | 0.84 |
scaled | E_quiet | N_relaxed | 14.66 | 0.00 | 0.16 | 1.06 | 15.39 | 0.10 | 0.18 | 2.44 |
scaled | E_quiet | N_worried | 15.37 | 0.03 | 0.16 | 3.01 | 13.66 | 0.04 | 0.21 | -0.31 |
scaled | N_depressed | A_kind | 21.89 | 0.00 | 0.13 | 0.30 | 18.11 | 0.01 | 0.17 | 0.95 |
scaled | N_depressed | A_rude | 8.18 | 0.00 | 0.22 | 0.32 | 10.82 | 0.07 | 0.18 | 0.87 |
scaled | N_depressed | C_lazy | 25.42 | 0.00 | 0.13 | 0.44 | 19.01 | 0.00 | 0.17 | 0.28 |
scaled | N_depressed | C_reliable | 21.95 | -0.06 | 0.14 | -3.71 | 13.34 | 0.04 | 0.17 | 0.78 |
scaled | N_depressed | E_outgoing | 62.10 | -0.03 | 0.11 | -6.64 | 27.92 | 0.01 | 0.15 | 1.39 |
scaled | N_depressed | E_quiet | 45.37 | 0.01 | 0.09 | 5.77 | 23.57 | -0.03 | 0.15 | -3.22 |
scaled | N_depressed | N_depressed | 11.09 | 0.01 | 0.14 | -1.15 | 13.13 | 0.02 | 0.16 | 0.81 |
scaled | N_depressed | N_relaxed | 31.42 | -0.02 | 0.11 | -2.15 | 20.62 | -0.09 | 0.14 | -2.97 |
scaled | N_depressed | N_worried | 20.21 | 0.01 | 0.09 | 1.53 | 19.66 | -0.04 | 0.16 | -0.18 |
scaled | N_relaxed | A_kind | 14.85 | 0.03 | 0.15 | 2.50 | 9.19 | 0.00 | 0.20 | -0.09 |
scaled | N_relaxed | A_rude | 5.98 | -0.06 | 0.25 | -0.44 | 3.68 | 0.07 | 0.22 | 1.07 |
scaled | N_relaxed | C_lazy | 21.61 | 0.02 | 0.14 | 1.54 | 16.65 | -0.02 | 0.18 | -0.58 |
scaled | N_relaxed | C_reliable | 15.81 | 0.03 | 0.17 | 0.61 | 9.56 | 0.03 | 0.22 | 0.40 |
scaled | N_relaxed | E_outgoing | 35.04 | -0.02 | 0.13 | -1.15 | 13.67 | 0.01 | 0.19 | 0.35 |
scaled | N_relaxed | E_quiet | 20.48 | -0.01 | 0.12 | -1.83 | 16.37 | 0.02 | 0.18 | 0.55 |
scaled | N_relaxed | N_depressed | 9.74 | -0.01 | 0.20 | 0.21 | 11.39 | 0.09 | 0.22 | 2.09 |
scaled | N_relaxed | N_relaxed | 16.55 | -0.01 | 0.13 | 0.06 | 8.57 | -0.04 | 0.14 | -2.76 |
scaled | N_relaxed | N_worried | 17.51 | 0.00 | 0.14 | 1.30 | 8.85 | -0.01 | 0.22 | 1.19 |
scaled | N_worried | A_kind | 13.67 | 0.04 | 0.15 | 2.01 | 8.69 | 0.02 | 0.18 | 1.92 |
scaled | N_worried | A_rude | 6.84 | 0.06 | 0.24 | 0.03 | 6.18 | -0.09 | 0.22 | -0.08 |
scaled | N_worried | C_lazy | 19.79 | -0.02 | 0.16 | -0.86 | 13.39 | -0.01 | 0.21 | 0.01 |
scaled | N_worried | C_reliable | 17.49 | -0.02 | 0.16 | 0.50 | 14.59 | 0.01 | 0.18 | 0.18 |
scaled | N_worried | E_outgoing | 40.82 | -0.05 | 0.12 | -4.37 | 16.00 | 0.01 | 0.18 | 1.28 |
scaled | N_worried | E_quiet | 28.87 | 0.00 | 0.13 | 0.66 | 23.44 | 0.02 | 0.14 | 1.63 |
scaled | N_worried | N_depressed | 12.27 | 0.05 | 0.19 | 1.20 | 7.49 | 0.10 | 0.23 | 2.04 |
scaled | N_worried | N_relaxed | 12.64 | -0.04 | 0.17 | -0.81 | 17.53 | 0.03 | 0.15 | 0.99 |
scaled | N_worried | N_worried | 11.12 | 0.02 | 0.12 | 0.52 | 8.04 | 0.01 | 0.18 | -0.14 |
unregularized | A_kind | A_kind | 0.18 | 0.01 | 0.16 | -0.31 | 0.40 | 0.03 | 0.16 | -0.01 |
unregularized | A_kind | A_rude | 0.17 | 0.00 | 0.15 | -0.17 | 0.65 | 0.02 | 0.17 | -0.41 |
unregularized | A_kind | C_lazy | 0.58 | 0.00 | 0.16 | -0.24 | -0.61 | 0.01 | 0.14 | -0.15 |
unregularized | A_kind | C_reliable | 1.76 | 0.01 | 0.15 | 0.50 | -0.45 | 0.01 | 0.13 | 0.03 |
unregularized | A_kind | E_outgoing | -0.21 | -0.01 | 0.15 | -0.02 | 0.41 | 0.00 | 0.14 | 0.26 |
unregularized | A_kind | E_quiet | -0.21 | 0.00 | 0.14 | 0.10 | 0.71 | 0.00 | 0.15 | 0.14 |
unregularized | A_kind | N_depressed | 0.72 | 0.01 | 0.15 | 0.02 | -0.03 | 0.02 | 0.15 | -0.26 |
unregularized | A_kind | N_relaxed | 0.27 | -0.01 | 0.15 | -0.03 | 0.48 | 0.01 | 0.13 | -0.51 |
unregularized | A_kind | N_worried | -0.10 | 0.02 | 0.14 | 0.03 | 1.32 | -0.01 | 0.14 | 0.35 |
unregularized | A_rude | A_kind | 0.36 | 0.00 | 0.16 | -0.01 | 1.10 | 0.00 | 0.14 | -0.58 |
unregularized | A_rude | A_rude | 2.63 | 0.00 | 0.15 | -0.22 | 0.03 | 0.01 | 0.14 | 0.51 |
unregularized | A_rude | C_lazy | 3.37 | -0.01 | 0.18 | -0.33 | 0.20 | 0.03 | 0.15 | 0.21 |
unregularized | A_rude | C_reliable | 2.88 | 0.01 | 0.17 | 0.73 | 0.81 | 0.00 | 0.15 | -0.11 |
unregularized | A_rude | E_outgoing | 0.17 | 0.00 | 0.15 | 0.05 | 0.01 | -0.01 | 0.13 | -0.06 |
unregularized | A_rude | E_quiet | 2.90 | 0.00 | 0.17 | -0.36 | -0.44 | 0.01 | 0.14 | 0.49 |
unregularized | A_rude | N_depressed | 4.26 | 0.01 | 0.17 | -0.07 | 0.46 | 0.01 | 0.13 | -0.22 |
unregularized | A_rude | N_relaxed | 3.72 | -0.02 | 0.17 | -0.65 | 0.16 | 0.01 | 0.14 | 0.25 |
unregularized | A_rude | N_worried | 3.77 | -0.01 | 0.17 | -0.28 | 0.71 | 0.04 | 0.13 | 0.25 |
unregularized | C_lazy | A_kind | 0.08 | 0.01 | 0.16 | 0.25 | 0.07 | 0.00 | 0.16 | -0.08 |
unregularized | C_lazy | A_rude | 0.45 | 0.00 | 0.15 | -0.06 | -0.10 | 0.02 | 0.14 | 0.11 |
unregularized | C_lazy | C_lazy | 0.18 | 0.03 | 0.15 | -0.08 | -0.06 | 0.03 | 0.15 | 0.16 |
unregularized | C_lazy | C_reliable | -0.25 | -0.03 | 0.16 | -0.14 | 0.62 | -0.01 | 0.14 | 0.44 |
unregularized | C_lazy | E_outgoing | 0.55 | -0.01 | 0.15 | -0.15 | 0.18 | -0.01 | 0.13 | -0.08 |
unregularized | C_lazy | E_quiet | 1.53 | 0.01 | 0.15 | -0.26 | -0.49 | -0.01 | 0.14 | -0.33 |
unregularized | C_lazy | N_depressed | 0.04 | 0.01 | 0.15 | 0.05 | 0.34 | 0.01 | 0.16 | 0.19 |
unregularized | C_lazy | N_relaxed | -0.05 | -0.01 | 0.15 | 0.18 | -0.40 | 0.02 | 0.12 | -0.31 |
unregularized | C_lazy | N_worried | -0.44 | 0.01 | 0.15 | -0.01 | -0.15 | 0.01 | 0.15 | -0.12 |
unregularized | C_reliable | A_kind | 0.33 | 0.02 | 0.16 | -0.23 | 0.01 | 0.00 | 0.13 | 0.28 |
unregularized | C_reliable | A_rude | -0.18 | 0.00 | 0.16 | -0.18 | 0.18 | 0.00 | 0.15 | 0.43 |
unregularized | C_reliable | C_lazy | 0.31 | 0.00 | 0.16 | -0.26 | -0.34 | -0.01 | 0.13 | -0.05 |
unregularized | C_reliable | C_reliable | 0.22 | 0.01 | 0.15 | 0.40 | 0.34 | 0.05 | 0.15 | 0.45 |
unregularized | C_reliable | E_outgoing | -0.13 | 0.00 | 0.17 | -0.05 | 0.30 | 0.00 | 0.14 | -0.29 |
unregularized | C_reliable | E_quiet | 0.13 | -0.02 | 0.16 | -0.11 | 0.51 | 0.02 | 0.14 | 0.50 |
unregularized | C_reliable | N_depressed | -0.18 | 0.01 | 0.15 | 0.00 | 0.52 | -0.01 | 0.15 | 0.08 |
unregularized | C_reliable | N_relaxed | 0.12 | 0.00 | 0.15 | -0.28 | 0.20 | 0.01 | 0.15 | 0.08 |
unregularized | C_reliable | N_worried | 0.56 | -0.01 | 0.16 | -0.04 | 0.72 | 0.00 | 0.14 | 0.09 |
unregularized | E_outgoing | A_kind | 0.18 | 0.01 | 0.15 | 0.13 | 1.40 | 0.01 | 0.18 | 0.16 |
unregularized | E_outgoing | A_rude | 0.43 | -0.01 | 0.15 | 0.08 | 0.98 | -0.01 | 0.16 | -0.22 |
unregularized | E_outgoing | C_lazy | 0.14 | 0.02 | 0.17 | -0.14 | 0.74 | 0.01 | 0.13 | 0.06 |
unregularized | E_outgoing | C_reliable | -0.43 | -0.01 | 0.15 | -0.27 | -0.24 | -0.02 | 0.15 | -0.18 |
unregularized | E_outgoing | E_outgoing | -0.05 | 0.00 | 0.15 | -0.01 | -0.79 | 0.02 | 0.14 | -0.03 |
unregularized | E_outgoing | E_quiet | 0.55 | 0.00 | 0.15 | 0.30 | 0.17 | -0.01 | 0.14 | 0.12 |
unregularized | E_outgoing | N_depressed | -0.08 | 0.00 | 0.14 | -0.04 | 0.18 | -0.01 | 0.15 | 0.07 |
unregularized | E_outgoing | N_relaxed | -0.03 | 0.00 | 0.16 | -0.12 | 0.80 | 0.00 | 0.14 | -0.40 |
unregularized | E_outgoing | N_worried | 0.19 | -0.01 | 0.14 | -0.17 | 0.08 | 0.01 | 0.16 | 0.27 |
unregularized | E_quiet | A_kind | 0.67 | 0.00 | 0.16 | 0.06 | 0.96 | 0.01 | 0.16 | 0.17 |
unregularized | E_quiet | A_rude | 0.12 | 0.01 | 0.14 | -0.13 | 1.44 | 0.00 | 0.15 | -0.24 |
unregularized | E_quiet | C_lazy | 0.27 | 0.01 | 0.16 | -0.21 | -0.10 | -0.01 | 0.14 | 0.24 |
unregularized | E_quiet | C_reliable | 0.29 | 0.00 | 0.15 | -0.13 | -0.23 | 0.00 | 0.14 | -0.16 |
unregularized | E_quiet | E_outgoing | -0.22 | 0.00 | 0.14 | 0.13 | 0.09 | 0.02 | 0.14 | 0.13 |
unregularized | E_quiet | E_quiet | -0.71 | 0.00 | 0.15 | 0.00 | 0.04 | -0.01 | 0.14 | -0.14 |
unregularized | E_quiet | N_depressed | 0.48 | 0.00 | 0.14 | -0.10 | 1.04 | 0.00 | 0.14 | 0.21 |
unregularized | E_quiet | N_relaxed | 0.68 | 0.01 | 0.15 | 0.08 | 0.21 | -0.01 | 0.14 | 0.26 |
unregularized | E_quiet | N_worried | 0.16 | 0.00 | 0.15 | 0.00 | 0.08 | 0.00 | 0.15 | -0.23 |
unregularized | N_depressed | A_kind | 0.06 | 0.01 | 0.15 | 0.18 | 0.38 | -0.02 | 0.14 | -0.16 |
unregularized | N_depressed | A_rude | 2.56 | -0.01 | 0.17 | 0.92 | 2.83 | -0.02 | 0.17 | -0.08 |
unregularized | N_depressed | C_lazy | 0.91 | 0.01 | 0.17 | -0.28 | -0.38 | 0.01 | 0.14 | -0.21 |
unregularized | N_depressed | C_reliable | 1.96 | 0.00 | 0.16 | -0.07 | -0.15 | -0.03 | 0.14 | -0.16 |
unregularized | N_depressed | E_outgoing | 1.27 | 0.00 | 0.16 | -0.38 | -0.19 | -0.01 | 0.16 | 0.09 |
unregularized | N_depressed | E_quiet | 0.31 | 0.00 | 0.16 | 0.12 | 0.26 | 0.00 | 0.14 | -0.06 |
unregularized | N_depressed | N_depressed | -0.46 | 0.05 | 0.17 | 0.31 | 1.96 | 0.08 | 0.18 | 0.73 |
unregularized | N_depressed | N_relaxed | 3.65 | 0.00 | 0.15 | -0.49 | 0.28 | -0.02 | 0.14 | 0.41 |
unregularized | N_depressed | N_worried | 1.35 | 0.01 | 0.17 | -0.15 | 0.96 | 0.01 | 0.14 | -0.13 |
unregularized | N_relaxed | A_kind | 0.66 | -0.01 | 0.15 | -0.27 | 0.05 | 0.01 | 0.16 | 0.21 |
unregularized | N_relaxed | A_rude | 1.09 | 0.00 | 0.15 | -0.28 | -0.02 | 0.00 | 0.13 | -0.24 |
unregularized | N_relaxed | C_lazy | 1.04 | 0.01 | 0.16 | 0.24 | 1.91 | 0.01 | 0.14 | -0.29 |
unregularized | N_relaxed | C_reliable | 0.35 | 0.01 | 0.17 | 0.03 | 0.93 | 0.01 | 0.15 | 0.00 |
unregularized | N_relaxed | E_outgoing | 0.55 | 0.00 | 0.15 | -0.09 | 0.54 | 0.00 | 0.14 | 0.32 |
unregularized | N_relaxed | E_quiet | 0.68 | -0.01 | 0.16 | -0.22 | -0.32 | 0.03 | 0.14 | 0.01 |
unregularized | N_relaxed | N_depressed | 1.39 | -0.02 | 0.16 | 0.06 | -0.16 | -0.02 | 0.15 | -0.11 |
unregularized | N_relaxed | N_relaxed | -0.24 | 0.02 | 0.14 | 0.05 | -0.46 | 0.02 | 0.13 | 0.23 |
unregularized | N_relaxed | N_worried | 0.20 | -0.03 | 0.14 | -0.07 | 0.96 | -0.01 | 0.16 | 0.24 |
unregularized | N_worried | A_kind | 0.61 | -0.04 | 0.15 | -0.04 | 1.54 | -0.03 | 0.17 | 0.26 |
unregularized | N_worried | A_rude | 1.03 | 0.01 | 0.15 | -0.11 | 2.55 | 0.03 | 0.16 | 0.54 |
unregularized | N_worried | C_lazy | 0.55 | -0.02 | 0.17 | 0.33 | 0.48 | -0.03 | 0.14 | -0.05 |
unregularized | N_worried | C_reliable | 0.26 | -0.02 | 0.16 | -0.22 | 0.02 | 0.01 | 0.15 | 0.15 |
unregularized | N_worried | E_outgoing | 0.08 | -0.03 | 0.16 | 0.14 | -0.22 | -0.02 | 0.14 | -0.01 |
unregularized | N_worried | E_quiet | 0.01 | 0.02 | 0.17 | -0.14 | 0.11 | 0.04 | 0.15 | -0.34 |
unregularized | N_worried | N_depressed | 0.07 | 0.04 | 0.15 | 0.26 | 0.37 | 0.02 | 0.16 | 0.07 |
unregularized | N_worried | N_relaxed | 0.29 | -0.07 | 0.17 | -0.14 | 0.63 | -0.06 | 0.14 | -0.14 |
unregularized | N_worried | N_worried | 0.06 | 0.09 | 0.16 | -0.26 | -0.27 | 0.11 | 0.16 | 0.12 |
library(ggridges)
## figure
temp_long %>%
filter(lambda_scale == ".25") %>%
ggplot(aes(x = weight, y = from, fill = factor(wave))) +
# tidybayes::geom_halfeyeh() +
geom_density_ridges(rel_min_height = 0.025) +
# geom_density() +
labs(x = "From", y = "Edge Weight",
title = "Regularized Lagged Partial Correlations") +
facet_grid(to~wave) +
theme_classic() +
theme(legend.position = "none")
#Contemporaneous: Partial Contemporaneous Correlations
contemp_long <- gVAR_fit %>%
unnest(contemp, .drop = T) %>%
mutate(Var1 = factor(Var1, levels = sort(unique(Var1))),
Var2 = factor(Var2, levels = sort(unique(Var2))),
type = "Contemporaneous")
contemp_long %>%
group_by(wave, lambda_scale, var) %>%
summarise_at(vars(weight), funs(M = fisherz2r(mean(fisherz(.), na.rm = T)),
sd(., na.rm = T), kurtosi, skew)) %>%
gather(est, value, M:skew) %>%
unite(tmp, wave, est, sep = ".") %>%
# arrange(desc(r)) %>%
spread(key = tmp, value = value) %>%
kable(., "html", booktabs = T, longtable = T, digits = 2,
caption = "Descriptives of Contemporaneous Edge Weights",
col.names = c("Network Type", "Variable", rep(c("Kurtosi", "M", "SD", "Skew"),2))) %>%
kable_styling(bootstrap_options = c("striped"),full_width = T) %>%
add_header_above(c(" " = 2, "Wave 1" = 4, "Wave 2" = 4)) %>%
scroll_box(width = "750px", height = "400px")
Network Type | Variable | Kurtosi | M | SD | Skew | Kurtosi | M | SD | Skew |
---|---|---|---|---|---|---|---|---|---|
.25 | A_kind.A_rude | 15.00 | -0.03 | 0.11 | -3.29 | 4.81 | -0.02 | 0.11 | -0.75 |
.25 | A_kind.C_lazy | 7.84 | -0.01 | 0.12 | 0.07 | 9.56 | -0.02 | 0.13 | -0.72 |
.25 | A_kind.C_reliable | 8.68 | 0.03 | 0.12 | 0.55 | 24.25 | 0.02 | 0.11 | 2.35 |
.25 | A_kind.E_outgoing | 4.49 | 0.07 | 0.14 | 1.67 | 5.09 | 0.06 | 0.12 | 1.86 |
.25 | A_kind.E_quiet | 4.07 | -0.04 | 0.10 | -1.16 | 14.98 | -0.03 | 0.12 | -2.10 |
.25 | A_kind.N_depressed | 15.41 | -0.02 | 0.08 | -3.25 | 17.81 | -0.01 | 0.07 | 1.57 |
.25 | A_kind.N_relaxed | 6.88 | 0.03 | 0.10 | 1.48 | 11.55 | 0.02 | 0.12 | 0.31 |
.25 | A_kind.N_worried | 12.78 | -0.02 | 0.09 | -2.01 | 8.53 | -0.01 | 0.12 | 0.15 |
.25 | A_rude.C_lazy | 18.09 | 0.01 | 0.09 | 0.48 | 11.73 | 0.01 | 0.10 | 0.71 |
.25 | A_rude.C_reliable | 19.96 | -0.01 | 0.09 | -0.64 | 19.40 | 0.00 | 0.07 | 1.45 |
.25 | A_rude.E_outgoing | 20.91 | 0.01 | 0.08 | 0.90 | 15.85 | 0.01 | 0.08 | 0.86 |
.25 | A_rude.E_quiet | 16.03 | -0.01 | 0.08 | -0.13 | 8.91 | -0.02 | 0.10 | -0.83 |
.25 | A_rude.N_depressed | 15.92 | 0.02 | 0.09 | 2.10 | 15.12 | 0.01 | 0.07 | 1.68 |
.25 | A_rude.N_relaxed | 23.76 | -0.01 | 0.10 | -1.42 | 18.73 | -0.01 | 0.09 | 0.10 |
.25 | A_rude.N_worried | 21.22 | 0.00 | 0.08 | -0.99 | 14.74 | 0.02 | 0.09 | 2.66 |
.25 | C_lazy.C_reliable | 0.96 | -0.13 | 0.19 | -0.36 | 0.26 | -0.14 | 0.19 | -0.89 |
.25 | C_lazy.E_outgoing | 3.73 | -0.04 | 0.15 | -0.06 | 4.05 | -0.03 | 0.10 | -1.20 |
.25 | C_lazy.E_quiet | 6.14 | 0.04 | 0.14 | 0.81 | 5.94 | 0.02 | 0.13 | 0.01 |
.25 | C_lazy.N_depressed | 7.99 | 0.03 | 0.12 | 1.52 | 13.90 | -0.01 | 0.09 | -2.22 |
.25 | C_lazy.N_relaxed | 0.63 | 0.11 | 0.16 | 0.58 | 1.36 | 0.10 | 0.16 | 1.14 |
.25 | C_lazy.N_worried | 8.70 | -0.02 | 0.13 | -0.49 | 5.35 | -0.01 | 0.11 | 0.66 |
.25 | C_reliable.E_outgoing | 7.82 | 0.03 | 0.13 | -0.51 | 9.89 | 0.04 | 0.12 | -0.34 |
.25 | C_reliable.E_quiet | 4.66 | -0.01 | 0.10 | 0.02 | 5.76 | -0.02 | 0.12 | -0.09 |
.25 | C_reliable.N_depressed | 10.75 | -0.03 | 0.12 | -0.98 | 8.09 | -0.03 | 0.12 | -1.71 |
.25 | C_reliable.N_relaxed | 8.72 | 0.02 | 0.13 | 0.84 | 6.75 | 0.01 | 0.08 | 0.61 |
.25 | C_reliable.N_worried | 7.77 | -0.01 | 0.11 | -0.14 | 15.75 | -0.01 | 0.11 | -0.06 |
.25 | E_outgoing.E_quiet | -0.17 | -0.51 | 0.22 | 0.66 | -0.50 | -0.50 | 0.25 | 0.52 |
.25 | E_outgoing.N_depressed | 6.48 | -0.04 | 0.10 | -1.87 | 11.54 | -0.04 | 0.11 | -2.60 |
.25 | E_outgoing.N_relaxed | 3.65 | 0.04 | 0.12 | 1.09 | 4.91 | 0.03 | 0.12 | 0.61 |
.25 | E_outgoing.N_worried | 9.61 | -0.03 | 0.12 | 0.17 | 6.09 | -0.04 | 0.10 | -1.55 |
.25 | E_quiet.N_depressed | 14.14 | 0.02 | 0.08 | 1.26 | 7.13 | 0.03 | 0.10 | 1.27 |
.25 | E_quiet.N_relaxed | 6.50 | -0.02 | 0.14 | 0.41 | 4.81 | -0.02 | 0.13 | -1.05 |
.25 | E_quiet.N_worried | 9.09 | 0.02 | 0.13 | 0.86 | 5.63 | 0.02 | 0.12 | 0.64 |
.25 | N_depressed.N_relaxed | 2.46 | -0.07 | 0.12 | -1.49 | 6.87 | -0.05 | 0.12 | -2.56 |
.25 | N_depressed.N_worried | 2.22 | 0.11 | 0.16 | 1.27 | 6.21 | 0.09 | 0.15 | 0.38 |
.25 | N_relaxed.N_worried | -0.42 | -0.24 | 0.21 | -0.44 | -0.59 | -0.21 | 0.19 | -0.27 |
.5 | A_kind.A_rude | 20.68 | -0.02 | 0.10 | -3.37 | 5.78 | -0.02 | 0.11 | -0.77 |
.5 | A_kind.C_lazy | 10.47 | 0.00 | 0.11 | 0.15 | 10.92 | -0.01 | 0.12 | -0.78 |
.5 | A_kind.C_reliable | 11.44 | 0.02 | 0.11 | 0.39 | 28.36 | 0.02 | 0.11 | 2.53 |
.5 | A_kind.E_outgoing | 6.47 | 0.06 | 0.12 | 1.92 | 6.42 | 0.05 | 0.11 | 2.08 |
.5 | A_kind.E_quiet | 4.75 | -0.03 | 0.09 | -1.07 | 18.55 | -0.02 | 0.11 | -2.36 |
.5 | A_kind.N_depressed | 21.08 | -0.02 | 0.08 | -3.74 | 15.42 | -0.01 | 0.08 | 1.18 |
.5 | A_kind.N_relaxed | 9.49 | 0.03 | 0.10 | 1.78 | 12.08 | 0.02 | 0.12 | 0.31 |
.5 | A_kind.N_worried | 14.42 | -0.02 | 0.09 | -2.09 | 9.97 | -0.01 | 0.12 | 0.22 |
.5 | A_rude.C_lazy | 22.38 | 0.01 | 0.08 | -0.01 | 13.04 | 0.01 | 0.11 | 1.26 |
.5 | A_rude.C_reliable | 28.56 | -0.01 | 0.08 | -0.70 | 23.50 | 0.00 | 0.06 | 1.51 |
.5 | A_rude.E_outgoing | 22.91 | 0.01 | 0.08 | 1.04 | 16.21 | 0.01 | 0.08 | 0.87 |
.5 | A_rude.E_quiet | 19.95 | 0.00 | 0.07 | 0.37 | 10.29 | -0.02 | 0.09 | -1.07 |
.5 | A_rude.N_depressed | 18.25 | 0.02 | 0.09 | 2.28 | 22.86 | 0.01 | 0.06 | 1.73 |
.5 | A_rude.N_relaxed | 30.21 | -0.01 | 0.09 | -1.20 | 24.71 | -0.01 | 0.08 | 0.54 |
.5 | A_rude.N_worried | 24.53 | 0.00 | 0.08 | -1.52 | 14.00 | 0.01 | 0.09 | 2.33 |
.5 | C_lazy.C_reliable | 1.54 | -0.11 | 0.19 | -0.57 | 0.59 | -0.13 | 0.17 | -0.95 |
.5 | C_lazy.E_outgoing | 4.29 | -0.04 | 0.14 | -0.22 | 4.79 | -0.03 | 0.09 | -1.36 |
.5 | C_lazy.E_quiet | 7.80 | 0.03 | 0.14 | 0.97 | 6.42 | 0.02 | 0.13 | -0.07 |
.5 | C_lazy.N_depressed | 10.52 | 0.03 | 0.11 | 2.36 | 18.28 | -0.01 | 0.08 | -2.53 |
.5 | C_lazy.N_relaxed | 1.74 | 0.10 | 0.15 | 0.96 | 1.49 | 0.10 | 0.16 | 1.20 |
.5 | C_lazy.N_worried | 11.14 | -0.01 | 0.12 | -0.54 | 5.88 | -0.01 | 0.10 | 0.92 |
.5 | C_reliable.E_outgoing | 9.44 | 0.02 | 0.13 | -0.47 | 10.62 | 0.04 | 0.12 | -0.33 |
.5 | C_reliable.E_quiet | 5.58 | -0.01 | 0.09 | 0.12 | 7.38 | -0.01 | 0.12 | 0.13 |
.5 | C_reliable.N_depressed | 14.35 | -0.03 | 0.11 | -1.43 | 8.38 | -0.03 | 0.12 | -1.68 |
.5 | C_reliable.N_relaxed | 11.91 | 0.02 | 0.12 | 1.05 | 7.59 | 0.01 | 0.08 | 0.76 |
.5 | C_reliable.N_worried | 9.37 | -0.01 | 0.10 | -0.17 | 16.50 | -0.01 | 0.10 | 0.04 |
.5 | E_outgoing.E_quiet | -0.39 | -0.48 | 0.22 | 0.51 | -0.57 | -0.47 | 0.24 | 0.43 |
.5 | E_outgoing.N_depressed | 8.96 | -0.03 | 0.10 | -2.26 | 13.85 | -0.03 | 0.11 | -2.90 |
.5 | E_outgoing.N_relaxed | 4.43 | 0.04 | 0.11 | 0.86 | 6.51 | 0.03 | 0.11 | 0.84 |
.5 | E_outgoing.N_worried | 11.66 | -0.03 | 0.11 | 0.08 | 4.70 | -0.03 | 0.09 | -1.31 |
.5 | E_quiet.N_depressed | 17.18 | 0.02 | 0.08 | 1.46 | 9.77 | 0.02 | 0.09 | 1.53 |
.5 | E_quiet.N_relaxed | 7.15 | -0.02 | 0.13 | 0.50 | 5.34 | -0.02 | 0.12 | -0.92 |
.5 | E_quiet.N_worried | 10.83 | 0.02 | 0.12 | 1.15 | 6.35 | 0.02 | 0.12 | 0.69 |
.5 | N_depressed.N_relaxed | 3.17 | -0.06 | 0.11 | -1.58 | 6.50 | -0.05 | 0.10 | -2.41 |
.5 | N_depressed.N_worried | 3.34 | 0.10 | 0.15 | 1.50 | 7.31 | 0.08 | 0.15 | 0.62 |
.5 | N_relaxed.N_worried | -0.21 | -0.21 | 0.20 | -0.57 | -0.66 | -0.19 | 0.19 | -0.30 |
association | A_kind.A_rude | -0.05 | -1.00 | 0.29 | -0.06 | -0.42 | -0.18 | 0.33 | 0.21 |
association | A_kind.C_lazy | 0.07 | -0.07 | 0.23 | 0.19 | 0.44 | -0.07 | 0.22 | 0.00 |
association | A_kind.C_reliable | -0.14 | 0.21 | 0.22 | -0.28 | -0.18 | 0.19 | 0.23 | -0.23 |
association | A_kind.E_outgoing | 0.36 | 0.30 | 0.21 | -0.59 | 0.26 | 0.27 | 0.21 | -0.49 |
association | A_kind.E_quiet | 0.43 | -0.26 | 0.22 | 0.40 | 0.04 | -0.22 | 0.22 | 0.35 |
association | A_kind.N_depressed | 0.22 | -0.15 | 0.24 | 0.12 | 0.39 | -0.17 | 0.22 | 0.43 |
association | A_kind.N_relaxed | 0.18 | 0.18 | 0.23 | -0.42 | 0.34 | 0.18 | 0.22 | -0.26 |
association | A_kind.N_worried | -0.11 | -0.14 | 0.22 | 0.32 | 0.65 | -0.15 | 0.24 | 0.54 |
association | A_rude.C_lazy | 0.40 | 0.06 | 0.21 | 0.06 | 0.35 | 0.05 | 0.17 | -0.04 |
association | A_rude.C_reliable | 0.24 | -0.10 | 0.22 | 0.02 | 0.11 | -0.07 | 0.21 | 0.15 |
association | A_rude.E_outgoing | 0.14 | 0.03 | 0.22 | 0.17 | 1.32 | 0.01 | 0.21 | 0.55 |
association | A_rude.E_quiet | 0.38 | -0.07 | 0.22 | 0.00 | 0.09 | -0.04 | 0.20 | 0.05 |
association | A_rude.N_depressed | -0.32 | 0.12 | 0.24 | 0.31 | -0.22 | 0.12 | 0.23 | 0.21 |
association | A_rude.N_relaxed | -0.02 | -0.09 | 0.23 | 0.11 | 1.42 | -0.09 | 0.21 | 0.13 |
association | A_rude.N_worried | -0.12 | 0.09 | 0.23 | -0.06 | 0.74 | 0.09 | 0.21 | 0.20 |
association | C_lazy.C_reliable | -0.39 | -0.32 | 0.25 | 0.35 | -0.67 | -0.35 | 0.26 | 0.32 |
association | C_lazy.E_outgoing | -0.22 | -0.15 | 0.27 | 0.13 | -0.33 | -0.15 | 0.24 | -0.19 |
association | C_lazy.E_quiet | -0.24 | 0.13 | 0.27 | -0.25 | -0.16 | 0.12 | 0.25 | 0.10 |
association | C_lazy.N_depressed | 0.19 | 0.09 | 0.25 | -0.22 | 0.06 | 0.08 | 0.21 | 0.19 |
association | C_lazy.N_relaxed | -0.30 | 0.23 | 0.26 | -0.32 | -0.30 | 0.22 | 0.26 | -0.42 |
association | C_lazy.N_worried | 0.19 | -0.08 | 0.24 | 0.10 | 0.10 | -0.05 | 0.24 | 0.55 |
association | C_reliable.E_outgoing | 0.47 | 0.22 | 0.25 | -0.32 | -0.25 | 0.24 | 0.22 | -0.25 |
association | C_reliable.E_quiet | 0.28 | -0.18 | 0.24 | 0.34 | 0.08 | -0.17 | 0.21 | 0.27 |
association | C_reliable.N_depressed | -0.13 | -0.18 | 0.25 | -0.08 | 0.38 | -0.19 | 0.25 | 0.18 |
association | C_reliable.N_relaxed | -0.29 | 0.08 | 0.26 | 0.13 | -0.33 | 0.06 | 0.26 | -0.21 |
association | C_reliable.N_worried | 0.11 | -0.10 | 0.25 | 0.27 | -0.42 | -0.11 | 0.23 | 0.10 |
association | E_outgoing.E_quiet | 1.77 | -0.72 | 0.16 | 1.19 | 2.31 | -0.73 | 0.17 | 1.28 |
association | E_outgoing.N_depressed | 0.53 | -0.23 | 0.23 | 0.35 | -0.25 | -0.22 | 0.20 | 0.26 |
association | E_outgoing.N_relaxed | -0.31 | 0.18 | 0.24 | -0.17 | 0.06 | 0.16 | 0.28 | -0.51 |
association | E_outgoing.N_worried | -0.31 | -0.20 | 0.22 | 0.16 | -0.39 | -0.21 | 0.24 | 0.36 |
association | E_quiet.N_depressed | -0.14 | 0.18 | 0.22 | -0.11 | -0.20 | 0.16 | 0.20 | 0.27 |
association | E_quiet.N_relaxed | -0.10 | -0.13 | 0.25 | 0.14 | -0.29 | -0.10 | 0.27 | 0.20 |
association | E_quiet.N_worried | -0.18 | 0.16 | 0.22 | -0.20 | -0.18 | 0.17 | 0.25 | -0.29 |
association | N_depressed.N_relaxed | 0.08 | -0.32 | 0.24 | 0.46 | 0.11 | -0.30 | 0.22 | 0.57 |
association | N_depressed.N_worried | -0.04 | 0.39 | 0.24 | -0.49 | 1.04 | 0.34 | 0.25 | -0.85 |
association | N_relaxed.N_worried | 0.28 | -0.53 | 0.22 | 0.63 | 1.37 | -0.48 | 0.24 | 1.17 |
gimme | A_kind.A_rude | 2.53 | -0.06 | 0.15 | -0.96 | 0.41 | -0.06 | 0.15 | -0.26 |
gimme | A_kind.C_lazy | 11.82 | 0.01 | 0.11 | 0.98 | 14.73 | -0.01 | 0.13 | 1.35 |
gimme | A_kind.C_reliable | 13.50 | 0.05 | 0.17 | 0.69 | 7.85 | 0.03 | 0.12 | 0.65 |
gimme | A_kind.E_outgoing | 8.23 | 0.06 | 0.14 | -0.17 | 0.08 | 0.06 | 0.11 | 0.98 |
gimme | A_kind.E_quiet | 69.49 | -0.04 | 0.16 | 5.25 | 136.49 | -0.03 | 2.38 | -11.72 |
gimme | A_kind.N_depressed | 8.05 | -0.04 | 0.13 | -1.86 | 5.40 | -0.03 | 0.10 | -1.68 |
gimme | A_kind.N_relaxed | 5.05 | 0.03 | 0.12 | 0.21 | 4.55 | 0.03 | 0.09 | 1.94 |
gimme | A_kind.N_worried | 23.60 | -0.03 | 0.12 | -3.61 | 6.49 | -0.02 | 0.12 | -0.72 |
gimme | A_rude.C_lazy | 20.19 | 0.02 | 0.12 | -1.23 | 12.88 | 0.01 | 0.06 | 2.70 |
gimme | A_rude.C_reliable | 41.72 | -0.02 | 0.14 | -3.22 | 7.36 | 0.00 | 0.09 | -0.27 |
gimme | A_rude.E_outgoing | 308.85 | 0.01 | 1.05 | 17.52 | 14.65 | 0.01 | 0.10 | 2.46 |
gimme | A_rude.E_quiet | 9.82 | -0.02 | 0.10 | -0.16 | 136.99 | -0.02 | 6.23 | -11.75 |
gimme | A_rude.N_depressed | 311.92 | 0.04 | 2.03 | 17.65 | 11.85 | 0.02 | 0.11 | -0.62 |
gimme | A_rude.N_relaxed | 58.68 | -0.01 | 0.13 | 3.90 | 9.66 | -0.02 | 0.10 | -1.70 |
gimme | A_rude.N_worried | 310.66 | 0.01 | 1.23 | -17.59 | 110.42 | 0.01 | 0.36 | 10.05 |
gimme | C_lazy.C_reliable | 14.53 | -0.13 | 0.19 | -2.49 | 1.42 | -0.13 | 0.18 | -0.56 |
gimme | C_lazy.E_outgoing | 7.63 | -0.04 | 0.15 | -1.08 | 28.01 | -0.01 | 0.14 | -3.25 |
gimme | C_lazy.E_quiet | 77.98 | 0.02 | 0.19 | -5.24 | 136.49 | 0.04 | 3.42 | 11.72 |
gimme | C_lazy.N_depressed | 9.23 | 0.02 | 0.12 | 0.26 | 15.40 | 0.01 | 0.12 | 2.30 |
gimme | C_lazy.N_relaxed | 4.43 | 0.08 | 0.15 | -0.47 | 12.82 | 0.07 | 0.16 | -1.31 |
gimme | C_lazy.N_worried | 33.01 | -0.02 | 0.15 | -4.27 | 122.44 | -0.02 | 0.58 | -10.81 |
gimme | C_reliable.E_outgoing | 154.20 | 0.04 | 0.57 | -11.31 | 33.33 | 0.04 | 0.15 | -3.62 |
gimme | C_reliable.E_quiet | 105.11 | -0.03 | 0.32 | -6.70 | 130.92 | -0.01 | 0.64 | -11.37 |
gimme | C_reliable.N_depressed | 13.08 | -0.05 | 0.14 | 0.35 | 4.55 | -0.04 | 0.13 | -0.71 |
gimme | C_reliable.N_relaxed | 13.33 | 0.02 | 0.12 | 0.56 | 4.30 | 0.01 | 0.10 | 0.46 |
gimme | C_reliable.N_worried | 23.66 | -0.01 | 0.14 | -2.27 | 9.57 | -0.03 | 0.11 | -2.37 |
gimme | E_outgoing.E_quiet | 6.88 | -0.33 | 0.17 | 1.53 | 133.90 | -0.34 | 4.77 | 11.56 |
gimme | E_outgoing.N_depressed | 143.79 | -0.05 | 0.28 | -10.10 | 106.27 | -0.02 | 0.33 | -9.68 |
gimme | E_outgoing.N_relaxed | 270.84 | 0.03 | 0.47 | 15.88 | 2.97 | 0.03 | 0.12 | 0.08 |
gimme | E_outgoing.N_worried | 270.22 | -0.02 | 0.47 | 15.75 | 57.96 | -0.02 | 0.19 | -6.24 |
gimme | E_quiet.N_depressed | 22.01 | 0.01 | 0.13 | 0.26 | 136.93 | 0.04 | 6.60 | -11.74 |
gimme | E_quiet.N_relaxed | 9.16 | -0.01 | 0.12 | -0.32 | 48.77 | -0.01 | 0.17 | 5.23 |
gimme | E_quiet.N_worried | 21.68 | 0.01 | 0.12 | -0.60 | 136.97 | 0.01 | 11.47 | 11.75 |
gimme | N_depressed.N_relaxed | 5.04 | -0.07 | 0.18 | 0.04 | 10.04 | -0.04 | 0.12 | 0.41 |
gimme | N_depressed.N_worried | 3.86 | 0.12 | 0.18 | 0.15 | 6.29 | 0.10 | 0.18 | 1.44 |
gimme | N_relaxed.N_worried | 17.98 | -0.20 | 0.20 | 2.18 | 131.06 | -0.18 | 1.13 | 11.37 |
mlVAR_EB | A_kind.A_rude | 0.95 | -0.14 | 0.12 | -0.39 | 0.51 | -0.18 | 0.19 | 0.10 |
mlVAR_EB | A_kind.C_lazy | 0.58 | -0.03 | 0.04 | -0.13 | 0.62 | -0.03 | 0.04 | 0.23 |
mlVAR_EB | A_kind.C_reliable | 1.41 | 0.13 | 0.05 | -0.05 | 0.27 | 0.13 | 0.06 | -0.15 |
mlVAR_EB | A_kind.E_outgoing | 1.47 | 0.16 | 0.06 | -0.18 | 0.18 | 0.16 | 0.06 | 0.28 |
mlVAR_EB | A_kind.E_quiet | 0.78 | -0.10 | 0.03 | 0.02 | 1.38 | -0.07 | 0.01 | 0.00 |
mlVAR_EB | A_kind.N_depressed | 1.56 | -0.03 | 0.05 | -0.41 | 0.64 | -0.05 | 0.04 | 0.20 |
mlVAR_EB | A_kind.N_relaxed | 0.95 | 0.10 | 0.03 | 0.30 | 1.55 | 0.08 | 0.01 | 0.53 |
mlVAR_EB | A_kind.N_worried | 1.34 | 0.00 | 0.00 | 0.11 | 1.32 | -0.02 | 0.05 | -0.19 |
mlVAR_EB | A_rude.C_lazy | 2.65 | 0.05 | 0.05 | 0.33 | 1.71 | 0.05 | 0.00 | 0.16 |
mlVAR_EB | A_rude.C_reliable | 1.98 | -0.07 | 0.05 | -0.06 | 1.52 | -0.03 | 0.00 | -0.26 |
mlVAR_EB | A_rude.E_outgoing | 1.81 | 0.03 | 0.01 | 0.33 | 10.37 | 0.02 | 0.00 | 1.78 |
mlVAR_EB | A_rude.E_quiet | 2.30 | -0.10 | 0.03 | -0.09 | 0.84 | -0.08 | 0.02 | -0.13 |
mlVAR_EB | A_rude.N_depressed | 1.64 | 0.09 | 0.08 | 0.00 | 1.15 | 0.08 | 0.07 | 0.42 |
mlVAR_EB | A_rude.N_relaxed | 2.98 | -0.05 | 0.04 | -0.35 | 0.90 | -0.05 | 0.01 | -0.26 |
mlVAR_EB | A_rude.N_worried | 1.91 | 0.04 | 0.02 | 0.50 | 2.12 | 0.03 | 0.02 | -0.09 |
mlVAR_EB | C_lazy.C_reliable | 0.69 | -0.25 | 0.08 | -0.30 | 0.33 | -0.29 | 0.10 | -0.02 |
mlVAR_EB | C_lazy.E_outgoing | 0.50 | -0.05 | 0.06 | -0.14 | 1.93 | -0.03 | 0.01 | 0.04 |
mlVAR_EB | C_lazy.E_quiet | 0.34 | 0.02 | 0.06 | 0.05 | 0.78 | 0.00 | 0.02 | -0.29 |
mlVAR_EB | C_lazy.N_depressed | 2.32 | 0.10 | 0.06 | 0.49 | 6.68 | 0.05 | 0.00 | 1.09 |
mlVAR_EB | C_lazy.N_relaxed | -0.18 | 0.23 | 0.06 | -0.04 | 0.24 | 0.24 | 0.06 | -0.35 |
mlVAR_EB | C_lazy.N_worried | 2.28 | -0.02 | 0.03 | -0.07 | 1.83 | -0.01 | 0.02 | -0.15 |
mlVAR_EB | C_reliable.E_outgoing | 3.68 | 0.05 | 0.05 | 0.29 | 1.08 | 0.06 | 0.02 | 0.05 |
mlVAR_EB | C_reliable.E_quiet | 0.78 | -0.04 | 0.02 | -0.03 | 0.51 | 0.00 | 0.04 | -0.37 |
mlVAR_EB | C_reliable.N_depressed | 0.80 | -0.08 | 0.06 | -0.26 | 3.80 | -0.10 | 0.02 | -0.80 |
mlVAR_EB | C_reliable.N_relaxed | 1.57 | 0.04 | 0.04 | -0.30 | 2.43 | 0.03 | 0.05 | 0.17 |
mlVAR_EB | C_reliable.N_worried | 0.79 | -0.02 | 0.03 | -0.11 | 0.11 | -0.06 | 0.01 | -0.02 |
mlVAR_EB | E_outgoing.E_quiet | 0.85 | -0.56 | 0.09 | 0.64 | -0.21 | -0.60 | 0.08 | 0.29 |
mlVAR_EB | E_outgoing.N_depressed | 0.83 | -0.08 | 0.03 | -0.53 | 0.11 | -0.07 | 0.01 | -0.08 |
mlVAR_EB | E_outgoing.N_relaxed | 0.53 | 0.09 | 0.04 | 0.02 | 0.34 | 0.09 | 0.06 | -0.03 |
mlVAR_EB | E_outgoing.N_worried | 0.83 | -0.07 | 0.00 | 0.14 | 1.44 | -0.07 | 0.03 | -0.32 |
mlVAR_EB | E_quiet.N_depressed | 0.68 | 0.03 | 0.01 | 0.25 | 2.15 | 0.03 | 0.03 | 0.71 |
mlVAR_EB | E_quiet.N_relaxed | 0.56 | -0.03 | 0.02 | 0.11 | 2.46 | 0.01 | 0.03 | -0.11 |
mlVAR_EB | E_quiet.N_worried | 0.57 | 0.02 | 0.02 | 0.00 | 0.46 | 0.02 | 0.01 | -0.50 |
mlVAR_EB | N_depressed.N_relaxed | 0.88 | -0.15 | 0.05 | -0.37 | 1.34 | -0.15 | 0.05 | -0.32 |
mlVAR_EB | N_depressed.N_worried | 1.04 | 0.23 | 0.09 | 0.54 | -0.39 | 0.22 | 0.07 | 0.27 |
mlVAR_EB | N_relaxed.N_worried | -0.05 | -0.37 | 0.09 | 0.06 | -0.04 | -0.38 | 0.07 | -0.05 |
scaled | A_kind.A_rude | 109.70 | -0.01 | 0.04 | -9.92 | 45.86 | 0.00 | 0.04 | -0.07 |
scaled | A_kind.C_lazy | 33.67 | -0.01 | 0.07 | 0.55 | 33.14 | -0.01 | 0.05 | -4.98 |
scaled | A_kind.C_reliable | 38.59 | 0.00 | 0.04 | 3.75 | 58.57 | 0.01 | 0.07 | 7.41 |
scaled | A_kind.E_outgoing | 7.15 | 0.03 | 0.07 | 2.51 | 14.06 | 0.03 | 0.07 | 3.53 |
scaled | A_kind.E_quiet | 13.79 | -0.02 | 0.06 | -3.65 | 27.08 | -0.01 | 0.07 | -2.82 |
scaled | A_kind.N_depressed | 50.36 | -0.01 | 0.06 | -0.96 | 72.04 | 0.00 | 0.02 | -8.23 |
scaled | A_kind.N_relaxed | 38.06 | 0.01 | 0.05 | 5.16 | 20.06 | 0.01 | 0.05 | 2.02 |
scaled | A_kind.N_worried | 38.79 | 0.00 | 0.06 | 0.15 | 20.31 | 0.00 | 0.07 | 2.05 |
scaled | A_rude.C_lazy | 45.10 | 0.01 | 0.05 | 5.18 | 51.63 | 0.00 | 0.02 | 7.20 |
scaled | A_rude.C_reliable | 82.79 | 0.00 | 0.02 | -7.51 | 133.39 | 0.00 | 0.01 | -11.24 |
scaled | A_rude.E_outgoing | 82.66 | 0.00 | 0.02 | 4.93 | 69.97 | 0.00 | 0.02 | 8.27 |
scaled | A_rude.E_quiet | 50.18 | 0.00 | 0.03 | -1.32 | 50.13 | -0.01 | 0.04 | -6.87 |
scaled | A_rude.N_depressed | 54.46 | 0.00 | 0.04 | 6.04 | 109.23 | 0.01 | 0.05 | 10.05 |
scaled | A_rude.N_relaxed | 65.59 | 0.00 | 0.03 | -5.20 | 97.02 | -0.01 | 0.06 | -9.67 |
scaled | A_rude.N_worried | 50.74 | 0.00 | 0.04 | 1.99 | 73.38 | 0.01 | 0.04 | 8.23 |
scaled | C_lazy.C_reliable | 2.93 | -0.07 | 0.13 | -1.87 | 5.96 | -0.06 | 0.13 | -2.60 |
scaled | C_lazy.E_outgoing | 9.90 | -0.03 | 0.10 | -1.29 | 18.34 | -0.02 | 0.07 | -4.02 |
scaled | C_lazy.E_quiet | 10.59 | 0.02 | 0.10 | 0.71 | 15.67 | 0.01 | 0.09 | -2.01 |
scaled | C_lazy.N_depressed | 28.18 | 0.01 | 0.06 | 3.61 | 29.35 | 0.00 | 0.05 | 3.10 |
scaled | C_lazy.N_relaxed | 4.34 | 0.05 | 0.10 | 1.92 | 9.44 | 0.04 | 0.09 | 2.95 |
scaled | C_lazy.N_worried | 44.17 | -0.01 | 0.07 | -4.08 | 26.26 | 0.00 | 0.07 | 2.10 |
scaled | C_reliable.E_outgoing | 12.46 | 0.02 | 0.08 | 1.49 | 14.37 | 0.02 | 0.04 | 3.44 |
scaled | C_reliable.E_quiet | 21.43 | -0.02 | 0.06 | -3.79 | 16.97 | -0.01 | 0.05 | -2.62 |
scaled | C_reliable.N_depressed | 23.77 | -0.02 | 0.07 | -4.73 | 39.68 | -0.01 | 0.06 | -6.10 |
scaled | C_reliable.N_relaxed | 30.45 | 0.01 | 0.07 | 1.39 | 19.08 | 0.01 | 0.05 | 2.96 |
scaled | C_reliable.N_worried | 28.31 | -0.01 | 0.06 | -1.54 | 56.66 | 0.00 | 0.07 | 3.50 |
scaled | E_outgoing.E_quiet | -0.94 | -0.41 | 0.23 | 0.31 | -1.38 | -0.33 | 0.25 | -0.13 |
scaled | E_outgoing.N_depressed | 11.91 | -0.02 | 0.06 | -3.38 | 51.90 | -0.01 | 0.06 | -6.26 |
scaled | E_outgoing.N_relaxed | 15.49 | 0.02 | 0.07 | 3.49 | 10.32 | 0.01 | 0.07 | 2.37 |
scaled | E_outgoing.N_worried | 11.69 | -0.02 | 0.07 | -2.54 | 26.52 | -0.02 | 0.06 | -4.36 |
scaled | E_quiet.N_depressed | 23.48 | 0.01 | 0.05 | 4.44 | 17.25 | 0.01 | 0.06 | -0.72 |
scaled | E_quiet.N_relaxed | 15.64 | -0.02 | 0.08 | -2.44 | 14.96 | 0.00 | 0.07 | -0.52 |
scaled | E_quiet.N_worried | 21.92 | 0.02 | 0.09 | 2.12 | 16.45 | 0.01 | 0.05 | 2.13 |
scaled | N_depressed.N_relaxed | 9.45 | -0.03 | 0.08 | -2.94 | 21.67 | -0.02 | 0.08 | -4.48 |
scaled | N_depressed.N_worried | 6.11 | 0.05 | 0.10 | 2.57 | 11.43 | 0.03 | 0.09 | 2.83 |
scaled | N_relaxed.N_worried | 0.70 | -0.13 | 0.17 | -1.28 | 4.43 | -0.08 | 0.14 | -2.16 |
unregularized | A_kind.A_rude | -0.06 | -0.13 | 0.37 | 0.27 | -0.50 | -0.22 | 0.34 | 0.01 |
unregularized | A_kind.C_lazy | 0.76 | 0.01 | 0.32 | 0.03 | 0.66 | -0.01 | 0.26 | 0.12 |
unregularized | A_kind.C_reliable | 0.66 | 0.14 | 0.33 | -0.19 | 0.62 | 0.08 | 0.25 | 0.02 |
unregularized | A_kind.E_outgoing | 0.69 | 0.12 | 0.32 | 0.07 | 1.96 | 0.12 | 0.25 | -0.06 |
unregularized | A_kind.E_quiet | 1.42 | -0.02 | 0.32 | 0.70 | 0.31 | -0.09 | 0.21 | -0.07 |
unregularized | A_kind.N_depressed | 0.31 | -0.06 | 0.33 | -0.26 | 1.21 | -0.06 | 0.28 | -0.69 |
unregularized | A_kind.N_relaxed | 1.21 | 0.10 | 0.32 | -0.54 | 0.06 | 0.10 | 0.22 | 0.17 |
unregularized | A_kind.N_worried | 0.70 | -0.06 | 0.31 | -0.34 | 1.63 | 0.02 | 0.29 | 0.88 |
unregularized | A_rude.C_lazy | 0.88 | 0.01 | 0.29 | -0.22 | 1.40 | 0.05 | 0.26 | -0.04 |
unregularized | A_rude.C_reliable | 0.33 | -0.11 | 0.31 | -0.27 | 1.56 | 0.02 | 0.27 | 0.40 |
unregularized | A_rude.E_outgoing | 1.08 | 0.07 | 0.29 | 0.41 | 2.01 | 0.01 | 0.28 | 0.46 |
unregularized | A_rude.E_quiet | 0.95 | -0.06 | 0.29 | 0.41 | 1.38 | -0.08 | 0.26 | 0.39 |
unregularized | A_rude.N_depressed | 0.39 | 0.07 | 0.31 | 0.00 | 2.28 | 0.02 | 0.28 | -0.85 |
unregularized | A_rude.N_relaxed | 0.45 | -0.05 | 0.30 | -0.21 | 0.97 | 0.00 | 0.26 | 0.09 |
unregularized | A_rude.N_worried | 0.99 | 0.07 | 0.31 | -0.15 | 1.80 | 0.10 | 0.30 | 0.67 |
unregularized | C_lazy.C_reliable | 0.55 | -0.31 | 0.34 | 0.50 | -0.51 | -0.30 | 0.27 | -0.03 |
unregularized | C_lazy.E_outgoing | 1.34 | -0.03 | 0.31 | 0.67 | 0.83 | -0.06 | 0.27 | -0.25 |
unregularized | C_lazy.E_quiet | 0.69 | 0.05 | 0.32 | 0.20 | -0.02 | 0.03 | 0.23 | 0.40 |
unregularized | C_lazy.N_depressed | 0.80 | 0.11 | 0.31 | -0.17 | 1.62 | 0.05 | 0.26 | -0.13 |
unregularized | C_lazy.N_relaxed | 1.18 | 0.27 | 0.32 | -0.57 | 0.07 | 0.23 | 0.24 | -0.27 |
unregularized | C_lazy.N_worried | 1.18 | 0.00 | 0.30 | 0.28 | 0.51 | -0.04 | 0.29 | -0.42 |
unregularized | C_reliable.E_outgoing | 1.07 | 0.08 | 0.30 | 0.10 | 2.03 | 0.11 | 0.24 | 0.48 |
unregularized | C_reliable.E_quiet | 1.44 | -0.05 | 0.31 | 0.30 | 2.21 | -0.01 | 0.24 | 0.32 |
unregularized | C_reliable.N_depressed | 0.38 | -0.06 | 0.33 | 0.35 | 1.61 | -0.06 | 0.26 | 0.16 |
unregularized | C_reliable.N_relaxed | 1.20 | 0.04 | 0.31 | -0.19 | 1.64 | 0.05 | 0.23 | 0.22 |
unregularized | C_reliable.N_worried | 0.95 | 0.02 | 0.32 | -0.15 | 0.89 | -0.06 | 0.27 | -0.59 |
unregularized | E_outgoing.E_quiet | 4.99 | -0.65 | 0.27 | 1.76 | 3.47 | -0.68 | 0.22 | 1.48 |
unregularized | E_outgoing.N_depressed | 0.96 | -0.09 | 0.30 | 0.26 | 2.43 | -0.03 | 0.26 | 0.55 |
unregularized | E_outgoing.N_relaxed | 0.32 | 0.06 | 0.33 | -0.09 | 1.15 | 0.09 | 0.25 | 0.52 |
unregularized | E_outgoing.N_worried | 0.95 | -0.10 | 0.30 | -0.10 | 2.93 | -0.07 | 0.25 | 0.01 |
unregularized | E_quiet.N_depressed | 0.80 | 0.00 | 0.30 | 0.14 | 1.18 | 0.07 | 0.22 | 0.64 |
unregularized | E_quiet.N_relaxed | 0.55 | -0.03 | 0.33 | -0.22 | 1.48 | 0.07 | 0.22 | 0.71 |
unregularized | E_quiet.N_worried | 0.87 | 0.04 | 0.32 | 0.16 | 0.91 | 0.02 | 0.23 | -0.09 |
unregularized | N_depressed.N_relaxed | 1.34 | -0.15 | 0.31 | 0.51 | 1.53 | -0.11 | 0.27 | 0.90 |
unregularized | N_depressed.N_worried | 1.53 | 0.22 | 0.32 | -0.71 | 0.40 | 0.25 | 0.29 | -0.10 |
unregularized | N_relaxed.N_worried | 2.61 | -0.39 | 0.31 | 1.13 | 0.05 | -0.40 | 0.22 | 0.32 |
# get SIDs from models
SID_w1 <- as.character(unique((gVAR_fit %>% filter(wave == "1"))$SID))
SID_w2 <- as.character(unique((gVAR_fit %>% filter(wave == "2"))$SID))
# find subjects in both waves
w1w2_subs <- unique(SID_w1)[unique(SID_w1) %in% unique(SID_w2)]
## figure
contemp_long %>%
filter(lambda_scale == ".25") %>%
ggplot(aes(x = weight, y = var, fill = factor(wave))) +
# tidybayes::geom_halfeyeh() +
geom_density_ridges(rel_min_height = 0.025) +
# geom_density() +
labs(x = "From", y = "Edge Weight",
title = "Regularized Contemporaneous Partial Correlations") +
facet_grid(~wave) +
theme_classic() +
theme(legend.position = "none")
It’s easy to create simple plots of graphivalVAR objects in R. The code below exactly reproduces Figures 2 and 3 in the manuscript.
edge_colors <- RColorBrewer::brewer.pal(8, "Purples")[c(3,4,6)]
idio_plot_fun <- function(data, subject, wave, type){
if(type == "Lagged"){data_mod <- data$PDC}
else{data_mod <- data$PCC}
b5_groups <- list(A = c(1,7), E = c(2, 6), C = c(3,8), N = c(4,5,9))
subject <- ifelse(subject == "22652", "1",
ifelse(subject == "91339", "2", subject))
plot <-
qgraph(data_mod, layout = "spring", loop = .7, node.width = 1.85, edge.width = 1,
esize = 7, title = sprintf("%s Wave %s for S%s", type, wave, subject),
label.font = 2, repulsion = .8, label.fill.vertical = 1,
label.fill.horizontal = 1, edge.color = "black", groups = b5_groups,
color = rev(t(RColorBrewer::brewer.pal(9, "Purples")[seq(1,7,2)])),
legend = F, DoNotPlot = TRUE, mar = c(4,4,4,4))
#change lines to dashed
plot$graphAttributes$Edges$lty[plot$Edgelist$weight < 0] <- 2
#change line colors
plot$graphAttributes$Edges$color <-
ifelse(abs(plot$Edgelist$weight) <.1, edge_colors[1],
ifelse(abs(plot$Edgelist$weight) <.2, edge_colors[2], edge_colors[3]))
# change labels of dark nodes to white
dark_colors <- c("#9E9AC8", "#807DBA", "#6A51A3", "#54278F", "#3F007D")
plot$graphAttributes$Nodes$label.color[plot$graphAttributes$Nodes$color %in% dark_colors] <- "white"
#change variable names
plot$graphAttributes$Nodes$labels <- gsub("_", "\n", names(plot$graphAttributes$Nodes$labels))
return(plot)
}
gVAR_fit <- gVAR_fit %>%
mutate(temp_plot = pmap(list(gVAR_fit, SID, wave, "Lagged"),
possibly(idio_plot_fun, NA_real_)),
contemp_plot = pmap(list(gVAR_fit, SID, wave, "Contemporaneous"),
possibly(idio_plot_fun, NA_real_)))
Below we will print the two example subjects (22652 = 1; 91339 = 2) from the manuscript.
par(mfrow = c(2,2))
gVAR_fit %>% filter(SID %in% c("22652") & lambda_scale == ".25") %>%
mutate(map(temp_plot, plot), map(contemp_plot, plot))
par(mfrow = c(2,2))
gVAR_fit %>% filter(SID %in% c("91339") & lambda_scale == ".25") %>%
mutate(map(temp_plot, plot), map(contemp_plot, plot))
We might also want to see a table of the individual edge weights over time, so below we produce a table for both contemporaneous and lagged network edges.
gVAR_fit %>% filter(SID %in% c("22652", "91339")) %>%
unnest(temp) %>% select(SID, wave, lambda_scale, from, to, weight) %>%
mutate_at(vars(from,to), funs(str_replace(., "_", " "))) %>%
unite(temp, SID, wave, sep = ".") %>%
spread(key = temp, value = weight) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
col.names = c("Network Type", "From", "To", "W1", "W2", "W1", "W2"),
align = c("l", "l", "l", rep("c", 4)),
caption = "Lagged Networks") %>%
add_header_above(c(" " = 3, "S1" = 2,"S2" = 2)) %>%
kable_styling(bootstrap_options = c("striped"), full_width = T) %>%
scroll_box(width = "750px", height = "400px")
Network Type | From | To | W1 | W2 | W1 | W2 |
---|---|---|---|---|---|---|
.25 | A kind | A kind | 0.00 | 0.00 | 0.00 | 0.22 |
.25 | A kind | A rude | 0.12 | 0.00 | 0.00 | 0.13 |
.25 | A kind | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A kind | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A kind | E outgoing | 0.00 | 0.00 | 0.00 | 0.11 |
.25 | A kind | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A kind | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A kind | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A kind | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | A kind | 0.00 | 0.00 | 0.00 | -0.07 |
.25 | A rude | A rude | 0.00 | 0.12 | -0.04 | 0.00 |
.25 | A rude | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A rude | N relaxed | 0.00 | 0.00 | 0.00 | 0.05 |
.25 | A rude | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C lazy | A kind | 0.00 | 0.20 | 0.20 | 0.00 |
.25 | C lazy | A rude | 0.31 | 0.00 | 0.37 | 0.00 |
.25 | C lazy | C lazy | 0.05 | 0.00 | 0.18 | -0.15 |
.25 | C lazy | C reliable | 0.00 | 0.00 | -0.26 | -0.15 |
.25 | C lazy | E outgoing | 0.00 | 0.00 | 0.00 | 0.11 |
.25 | C lazy | E quiet | 0.00 | 0.00 | -0.12 | 0.02 |
.25 | C lazy | N depressed | 0.00 | 0.00 | 0.07 | 0.00 |
.25 | C lazy | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C lazy | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C reliable | A kind | 0.00 | 0.00 | 0.00 | -0.05 |
.25 | C reliable | A rude | 0.54 | 0.00 | 0.23 | 0.00 |
.25 | C reliable | C lazy | 0.00 | 0.00 | 0.00 | 0.32 |
.25 | C reliable | C reliable | 0.00 | 0.00 | -0.32 | 0.00 |
.25 | C reliable | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C reliable | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C reliable | N depressed | 0.00 | 0.00 | 0.00 | 0.04 |
.25 | C reliable | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C reliable | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E outgoing | A kind | 0.00 | -0.20 | -0.19 | -0.24 |
.25 | E outgoing | A rude | -0.31 | 0.00 | -0.01 | 0.00 |
.25 | E outgoing | C lazy | 0.00 | 0.02 | 0.00 | 0.00 |
.25 | E outgoing | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E outgoing | E outgoing | 0.00 | 0.00 | 0.00 | -0.08 |
.25 | E outgoing | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E outgoing | N depressed | 0.00 | 0.00 | -0.18 | 0.00 |
.25 | E outgoing | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E outgoing | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E quiet | A kind | 0.00 | 0.00 | 0.19 | 0.00 |
.25 | E quiet | A rude | 0.17 | -0.09 | 0.14 | 0.00 |
.25 | E quiet | C lazy | 0.00 | 0.00 | 0.00 | 0.02 |
.25 | E quiet | C reliable | 0.00 | -0.02 | 0.42 | 0.00 |
.25 | E quiet | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E quiet | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E quiet | N depressed | -0.03 | 0.00 | 0.02 | 0.00 |
.25 | E quiet | N relaxed | 0.00 | 0.00 | -0.16 | -0.23 |
.25 | E quiet | N worried | 0.00 | 0.01 | 0.00 | -0.08 |
.25 | N depressed | A kind | 0.00 | -0.05 | -0.04 | 0.00 |
.25 | N depressed | A rude | 0.32 | 0.32 | 0.00 | 0.00 |
.25 | N depressed | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N depressed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N depressed | E outgoing | 0.00 | -0.07 | -0.01 | 0.18 |
.25 | N depressed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N depressed | N depressed | 0.07 | 0.00 | 0.00 | 0.28 |
.25 | N depressed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N depressed | N worried | 0.00 | 0.00 | 0.04 | 0.22 |
.25 | N relaxed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | A rude | -0.61 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | C lazy | 0.00 | 0.00 | 0.08 | 0.00 |
.25 | N relaxed | C reliable | 0.00 | 0.00 | 0.03 | -0.03 |
.25 | N relaxed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N relaxed | N worried | 0.00 | 0.00 | -0.06 | -0.06 |
.25 | N worried | A kind | -0.11 | -0.45 | 0.16 | -0.06 |
.25 | N worried | A rude | -0.18 | 0.00 | 0.31 | 0.00 |
.25 | N worried | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N worried | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N worried | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N worried | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | N worried | N depressed | 0.00 | 0.00 | 0.30 | 0.06 |
.25 | N worried | N relaxed | 0.00 | 0.00 | -0.26 | -0.08 |
.25 | N worried | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | A rude | 0.13 | 0.00 | 0.00 | 0.00 |
.5 | A kind | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A kind | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A rude | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | A kind | 0.00 | 0.14 | 0.12 | 0.00 |
.5 | C lazy | A rude | 0.28 | 0.00 | 0.32 | 0.00 |
.5 | C lazy | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C lazy | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | A rude | 0.50 | 0.00 | 0.16 | 0.00 |
.5 | C reliable | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C reliable | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | A kind | 0.00 | -0.13 | -0.16 | 0.00 |
.5 | E outgoing | A rude | -0.29 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E outgoing | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | A kind | 0.00 | 0.00 | 0.14 | 0.00 |
.5 | E quiet | A rude | 0.17 | -0.04 | 0.18 | 0.00 |
.5 | E quiet | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E quiet | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | A rude | 0.29 | 0.22 | 0.00 | 0.00 |
.5 | N depressed | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N depressed | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | A rude | -0.59 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N relaxed | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | A kind | 0.00 | -0.38 | 0.03 | 0.00 |
.5 | N worried | A rude | -0.16 | 0.00 | 0.22 | 0.00 |
.5 | N worried | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N worried | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
association | A kind | A kind | 0.08 | -0.05 | 0.25 | 0.40 |
association | A kind | A rude | 0.31 | 0.04 | 0.01 | 0.30 |
association | A kind | C lazy | 0.16 | 0.27 | -0.04 | 0.33 |
association | A kind | C reliable | -0.14 | -0.34 | -0.02 | -0.07 |
association | A kind | E outgoing | -0.11 | -0.01 | -0.41 | 0.24 |
association | A kind | E quiet | 0.31 | 0.13 | 0.33 | -0.30 |
association | A kind | N depressed | -0.05 | -0.03 | 0.56 | -0.03 |
association | A kind | N relaxed | 0.07 | 0.35 | -0.29 | 0.35 |
association | A kind | N worried | -0.04 | -0.23 | 0.47 | -0.18 |
association | A rude | A kind | 0.07 | -0.30 | -0.02 | -0.34 |
association | A rude | A rude | -0.15 | 0.29 | -0.14 | -0.04 |
association | A rude | C lazy | -0.01 | -0.04 | -0.21 | 0.41 |
association | A rude | C reliable | 0.16 | 0.07 | -0.23 | 0.02 |
association | A rude | E outgoing | 0.20 | -0.17 | -0.03 | -0.11 |
association | A rude | E quiet | -0.23 | 0.12 | -0.28 | 0.19 |
association | A rude | N depressed | -0.24 | 0.24 | 0.14 | 0.02 |
association | A rude | N relaxed | 0.32 | -0.02 | -0.11 | 0.37 |
association | A rude | N worried | -0.24 | 0.28 | 0.17 | -0.05 |
association | C lazy | A kind | -0.05 | 0.23 | 0.27 | -0.07 |
association | C lazy | A rude | 0.04 | 0.01 | 0.29 | 0.00 |
association | C lazy | C lazy | 0.33 | 0.11 | 0.50 | -0.38 |
association | C lazy | C reliable | -0.21 | -0.17 | -0.34 | -0.35 |
association | C lazy | E outgoing | -0.05 | -0.12 | 0.07 | 0.13 |
association | C lazy | E quiet | 0.02 | 0.09 | -0.39 | 0.22 |
association | C lazy | N depressed | 0.15 | -0.10 | -0.02 | -0.20 |
association | C lazy | N relaxed | 0.07 | -0.05 | 0.26 | 0.02 |
association | C lazy | N worried | -0.02 | -0.04 | -0.21 | -0.02 |
association | C reliable | A kind | 0.05 | -0.10 | 0.09 | -0.17 |
association | C reliable | A rude | 0.06 | 0.12 | 0.31 | -0.06 |
association | C reliable | C lazy | -0.22 | -0.17 | -0.31 | 0.43 |
association | C reliable | C reliable | 0.16 | 0.25 | -0.33 | -0.15 |
association | C reliable | E outgoing | 0.01 | 0.15 | 0.20 | 0.01 |
association | C reliable | E quiet | 0.07 | -0.13 | -0.31 | -0.14 |
association | C reliable | N depressed | -0.16 | 0.02 | -0.15 | 0.22 |
association | C reliable | N relaxed | -0.16 | 0.01 | -0.14 | -0.02 |
association | C reliable | N worried | 0.06 | 0.03 | 0.01 | 0.16 |
association | E outgoing | A kind | 0.08 | -0.20 | -0.41 | -0.39 |
association | E outgoing | A rude | 0.17 | -0.01 | -0.24 | 0.17 |
association | E outgoing | C lazy | -0.16 | 0.28 | -0.06 | 0.03 |
association | E outgoing | C reliable | 0.10 | -0.18 | -0.22 | -0.21 |
association | E outgoing | E outgoing | 0.03 | 0.01 | 0.17 | -0.28 |
association | E outgoing | E quiet | -0.08 | -0.04 | -0.16 | 0.00 |
association | E outgoing | N depressed | -0.04 | 0.09 | -0.43 | 0.04 |
association | E outgoing | N relaxed | -0.02 | 0.05 | 0.12 | 0.19 |
association | E outgoing | N worried | -0.01 | 0.10 | -0.05 | -0.12 |
association | E quiet | A kind | -0.10 | 0.09 | 0.34 | 0.12 |
association | E quiet | A rude | -0.03 | -0.15 | 0.36 | -0.02 |
association | E quiet | C lazy | -0.04 | -0.02 | -0.27 | 0.18 |
association | E quiet | C reliable | 0.02 | -0.13 | 0.32 | 0.13 |
association | E quiet | E outgoing | -0.05 | -0.06 | 0.13 | 0.12 |
association | E quiet | E quiet | -0.03 | 0.11 | 0.01 | -0.04 |
association | E quiet | N depressed | -0.19 | 0.11 | 0.30 | -0.03 |
association | E quiet | N relaxed | -0.01 | -0.09 | -0.46 | -0.17 |
association | E quiet | N worried | -0.08 | 0.17 | 0.18 | -0.23 |
association | N depressed | A kind | -0.03 | -0.30 | 0.01 | -0.19 |
association | N depressed | A rude | -0.16 | 0.40 | 0.11 | -0.14 |
association | N depressed | C lazy | 0.12 | -0.15 | -0.42 | -0.11 |
association | N depressed | C reliable | -0.13 | 0.22 | 0.16 | 0.11 |
association | N depressed | E outgoing | 0.12 | -0.36 | -0.24 | 0.24 |
association | N depressed | E quiet | -0.20 | 0.09 | 0.17 | 0.17 |
association | N depressed | N depressed | 0.34 | -0.05 | 0.46 | 0.55 |
association | N depressed | N relaxed | 0.14 | -0.26 | -0.41 | -0.25 |
association | N depressed | N worried | 0.13 | -0.10 | 0.43 | 0.50 |
association | N relaxed | A kind | 0.06 | 0.12 | -0.03 | 0.10 |
association | N relaxed | A rude | 0.25 | -0.04 | -0.01 | 0.06 |
association | N relaxed | C lazy | 0.19 | 0.15 | 0.51 | -0.02 |
association | N relaxed | C reliable | -0.14 | -0.11 | 0.09 | -0.31 |
association | N relaxed | E outgoing | 0.17 | -0.15 | 0.19 | 0.04 |
association | N relaxed | E quiet | -0.09 | 0.20 | -0.11 | 0.22 |
association | N relaxed | N depressed | 0.09 | -0.01 | -0.41 | -0.20 |
association | N relaxed | N relaxed | 0.06 | -0.02 | 0.38 | 0.23 |
association | N relaxed | N worried | -0.13 | -0.03 | -0.39 | -0.42 |
association | N worried | A kind | -0.24 | -0.47 | 0.28 | -0.31 |
association | N worried | A rude | -0.35 | 0.23 | 0.30 | -0.03 |
association | N worried | C lazy | -0.24 | 0.00 | -0.37 | -0.01 |
association | N worried | C reliable | 0.14 | -0.02 | 0.17 | 0.12 |
association | N worried | E outgoing | 0.21 | -0.38 | -0.21 | -0.07 |
association | N worried | E quiet | -0.12 | 0.25 | -0.02 | 0.07 |
association | N worried | N depressed | 0.06 | 0.08 | 0.65 | 0.42 |
association | N worried | N relaxed | -0.21 | -0.03 | -0.67 | -0.36 |
association | N worried | N worried | 0.22 | 0.03 | 0.44 | 0.31 |
gimme | A kind | A kind | 0.19 | -0.13 | 0.24 | 0.46 |
gimme | A kind | A rude | 0.00 | 0.00 | 0.00 | -0.33 |
gimme | A kind | C lazy | 0.00 | 0.34 | 0.00 | 0.00 |
gimme | A kind | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A kind | E outgoing | 0.00 | 0.00 | 0.00 | -0.33 |
gimme | A kind | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A kind | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A kind | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A kind | N worried | 0.00 | -0.56 | 0.00 | 0.00 |
gimme | A rude | A kind | 0.00 | 0.00 | -0.40 | 0.33 |
gimme | A rude | A rude | -0.10 | 0.33 | 0.07 | -0.03 |
gimme | A rude | C lazy | 0.00 | 0.00 | 0.97 | 0.00 |
gimme | A rude | C reliable | 0.00 | 0.00 | 0.95 | 0.00 |
gimme | A rude | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A rude | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A rude | N depressed | 0.00 | 0.43 | 0.00 | 0.00 |
gimme | A rude | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A rude | N worried | 0.00 | 0.00 | 0.90 | 0.00 |
gimme | C lazy | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C lazy | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C lazy | C lazy | 0.33 | -0.05 | 0.36 | -0.30 |
gimme | C lazy | C reliable | 0.00 | 0.00 | 0.00 | 0.46 |
gimme | C lazy | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C lazy | E quiet | 0.00 | 0.00 | 0.00 | 0.32 |
gimme | C lazy | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C lazy | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C lazy | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C reliable | A kind | 0.00 | -0.54 | 0.00 | 0.00 |
gimme | C reliable | A rude | 0.00 | 0.00 | -0.44 | 0.00 |
gimme | C reliable | C lazy | 0.00 | 0.00 | 0.00 | -0.41 |
gimme | C reliable | C reliable | 0.00 | 0.22 | -0.56 | -0.25 |
gimme | C reliable | E outgoing | 0.00 | 0.00 | -0.51 | 0.00 |
gimme | C reliable | E quiet | 0.00 | 0.00 | 0.43 | 0.00 |
gimme | C reliable | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C reliable | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C reliable | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | A kind | 0.00 | 0.00 | -0.39 | 0.00 |
gimme | E outgoing | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | E outgoing | -0.03 | -0.08 | 0.08 | -0.30 |
gimme | E outgoing | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | N depressed | 0.00 | -0.32 | 0.00 | 0.41 |
gimme | E outgoing | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E outgoing | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | E quiet | -0.06 | 0.15 | -0.24 | 0.02 |
gimme | E quiet | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E quiet | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | C lazy | 0.00 | 0.00 | 0.88 | 0.00 |
gimme | N depressed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N depressed | N depressed | 0.27 | -0.05 | -0.21 | 0.55 |
gimme | N depressed | N relaxed | 0.00 | 0.00 | -0.80 | 0.00 |
gimme | N depressed | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N relaxed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N relaxed | A rude | 0.00 | 0.00 | 0.00 | 0.33 |
gimme | N relaxed | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N relaxed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N relaxed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N relaxed | E quiet | 0.00 | 0.00 | -0.34 | -0.47 |
gimme | N relaxed | N depressed | 0.00 | 0.00 | 0.00 | 0.30 |
gimme | N relaxed | N relaxed | -0.09 | -0.15 | -0.15 | -0.06 |
gimme | N relaxed | N worried | 0.00 | 0.00 | -0.77 | 0.00 |
gimme | N worried | A kind | 0.00 | 0.00 | 0.39 | -0.37 |
gimme | N worried | A rude | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N worried | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N worried | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N worried | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N worried | E quiet | 0.00 | 0.00 | 0.00 | -0.32 |
gimme | N worried | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | N worried | N relaxed | 0.00 | 0.00 | 0.00 | -0.50 |
gimme | N worried | N worried | 0.20 | -0.09 | 0.35 | -0.28 |
mlVAR_EB | A kind | A kind | 0.02 | 0.07 | 0.05 | 0.14 |
mlVAR_EB | A kind | A rude | -0.01 | 0.00 | -0.02 | 0.00 |
mlVAR_EB | A kind | C lazy | 0.00 | 0.02 | 0.02 | 0.02 |
mlVAR_EB | A kind | C reliable | 0.03 | -0.01 | 0.03 | -0.01 |
mlVAR_EB | A kind | E outgoing | 0.01 | -0.02 | 0.00 | -0.02 |
mlVAR_EB | A kind | E quiet | 0.00 | 0.01 | 0.00 | 0.01 |
mlVAR_EB | A kind | N depressed | 0.02 | -0.06 | 0.03 | -0.04 |
mlVAR_EB | A kind | N relaxed | 0.00 | -0.02 | 0.00 | -0.01 |
mlVAR_EB | A kind | N worried | -0.02 | -0.05 | -0.01 | -0.05 |
mlVAR_EB | A rude | A kind | 0.00 | 0.02 | 0.00 | 0.07 |
mlVAR_EB | A rude | A rude | 0.04 | 0.09 | 0.00 | 0.01 |
mlVAR_EB | A rude | C lazy | -0.01 | 0.04 | 0.01 | 0.01 |
mlVAR_EB | A rude | C reliable | -0.01 | 0.00 | 0.01 | -0.01 |
mlVAR_EB | A rude | E outgoing | 0.00 | 0.00 | -0.01 | 0.00 |
mlVAR_EB | A rude | E quiet | 0.01 | -0.01 | 0.01 | -0.01 |
mlVAR_EB | A rude | N depressed | -0.02 | 0.00 | -0.01 | 0.00 |
mlVAR_EB | A rude | N relaxed | 0.01 | 0.01 | 0.01 | 0.01 |
mlVAR_EB | A rude | N worried | 0.00 | 0.05 | 0.01 | 0.02 |
mlVAR_EB | C lazy | A kind | -0.04 | 0.09 | -0.03 | 0.05 |
mlVAR_EB | C lazy | A rude | 0.02 | -0.01 | -0.01 | 0.06 |
mlVAR_EB | C lazy | C lazy | 0.05 | 0.06 | 0.22 | -0.05 |
mlVAR_EB | C lazy | C reliable | 0.01 | 0.02 | 0.01 | 0.02 |
mlVAR_EB | C lazy | E outgoing | -0.04 | 0.02 | 0.00 | 0.02 |
mlVAR_EB | C lazy | E quiet | 0.00 | -0.01 | -0.01 | -0.01 |
mlVAR_EB | C lazy | N depressed | 0.03 | 0.02 | -0.02 | 0.01 |
mlVAR_EB | C lazy | N relaxed | 0.05 | 0.02 | 0.05 | 0.01 |
mlVAR_EB | C lazy | N worried | -0.02 | -0.04 | -0.07 | -0.05 |
mlVAR_EB | C reliable | A kind | 0.05 | -0.04 | 0.00 | 0.00 |
mlVAR_EB | C reliable | A rude | -0.02 | 0.03 | -0.02 | 0.01 |
mlVAR_EB | C reliable | C lazy | -0.02 | -0.03 | -0.02 | -0.03 |
mlVAR_EB | C reliable | C reliable | 0.03 | 0.09 | -0.05 | 0.01 |
mlVAR_EB | C reliable | E outgoing | 0.01 | -0.02 | 0.00 | -0.02 |
mlVAR_EB | C reliable | E quiet | 0.01 | 0.00 | 0.01 | 0.00 |
mlVAR_EB | C reliable | N depressed | -0.02 | 0.04 | 0.00 | 0.01 |
mlVAR_EB | C reliable | N relaxed | -0.01 | 0.01 | -0.01 | 0.01 |
mlVAR_EB | C reliable | N worried | 0.00 | -0.01 | 0.00 | -0.01 |
mlVAR_EB | E outgoing | A kind | -0.03 | 0.02 | -0.03 | 0.02 |
mlVAR_EB | E outgoing | A rude | -0.03 | -0.01 | -0.03 | -0.01 |
mlVAR_EB | E outgoing | C lazy | -0.03 | 0.03 | -0.02 | 0.04 |
mlVAR_EB | E outgoing | C reliable | -0.03 | 0.06 | 0.03 | 0.05 |
mlVAR_EB | E outgoing | E outgoing | 0.05 | 0.02 | 0.01 | 0.02 |
mlVAR_EB | E outgoing | E quiet | 0.01 | 0.00 | 0.01 | 0.00 |
mlVAR_EB | E outgoing | N depressed | 0.03 | -0.08 | 0.00 | 0.00 |
mlVAR_EB | E outgoing | N relaxed | 0.03 | 0.01 | 0.02 | 0.01 |
mlVAR_EB | E outgoing | N worried | -0.08 | -0.05 | -0.07 | -0.03 |
mlVAR_EB | E quiet | A kind | 0.04 | -0.02 | 0.02 | -0.02 |
mlVAR_EB | E quiet | A rude | 0.03 | 0.01 | 0.03 | 0.01 |
mlVAR_EB | E quiet | C lazy | 0.04 | -0.02 | 0.00 | -0.02 |
mlVAR_EB | E quiet | C reliable | 0.01 | -0.03 | -0.04 | -0.04 |
mlVAR_EB | E quiet | E outgoing | -0.01 | 0.01 | -0.01 | 0.01 |
mlVAR_EB | E quiet | E quiet | -0.01 | 0.02 | -0.01 | 0.03 |
mlVAR_EB | E quiet | N depressed | -0.01 | 0.00 | 0.00 | 0.00 |
mlVAR_EB | E quiet | N relaxed | -0.01 | 0.11 | -0.01 | 0.04 |
mlVAR_EB | E quiet | N worried | 0.05 | 0.17 | 0.03 | 0.09 |
mlVAR_EB | N depressed | A kind | 0.01 | 0.03 | 0.01 | 0.03 |
mlVAR_EB | N depressed | A rude | 0.03 | 0.03 | 0.03 | 0.03 |
mlVAR_EB | N depressed | C lazy | 0.01 | -0.02 | 0.02 | -0.01 |
mlVAR_EB | N depressed | C reliable | 0.00 | -0.02 | -0.04 | -0.01 |
mlVAR_EB | N depressed | E outgoing | 0.01 | 0.03 | 0.01 | 0.00 |
mlVAR_EB | N depressed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
mlVAR_EB | N depressed | N depressed | 0.09 | -0.01 | 0.20 | 0.37 |
mlVAR_EB | N depressed | N relaxed | -0.02 | 0.00 | -0.02 | 0.00 |
mlVAR_EB | N depressed | N worried | 0.08 | 0.01 | 0.16 | 0.06 |
mlVAR_EB | N relaxed | A kind | -0.01 | 0.07 | -0.01 | 0.04 |
mlVAR_EB | N relaxed | A rude | -0.05 | -0.02 | -0.06 | -0.02 |
mlVAR_EB | N relaxed | C lazy | -0.01 | 0.03 | 0.02 | 0.03 |
mlVAR_EB | N relaxed | C reliable | -0.04 | 0.02 | -0.03 | 0.02 |
mlVAR_EB | N relaxed | E outgoing | -0.02 | -0.02 | -0.02 | -0.02 |
mlVAR_EB | N relaxed | E quiet | 0.00 | -0.06 | -0.01 | -0.05 |
mlVAR_EB | N relaxed | N depressed | -0.01 | -0.08 | -0.01 | -0.06 |
mlVAR_EB | N relaxed | N relaxed | 0.02 | 0.03 | 0.03 | 0.05 |
mlVAR_EB | N relaxed | N worried | -0.09 | -0.07 | -0.25 | -0.09 |
mlVAR_EB | N worried | A kind | 0.02 | -0.02 | 0.02 | 0.01 |
mlVAR_EB | N worried | A rude | 0.04 | 0.05 | 0.05 | 0.05 |
mlVAR_EB | N worried | C lazy | 0.01 | 0.01 | 0.01 | 0.00 |
mlVAR_EB | N worried | C reliable | 0.08 | -0.03 | 0.00 | -0.01 |
mlVAR_EB | N worried | E outgoing | 0.01 | 0.04 | 0.01 | 0.04 |
mlVAR_EB | N worried | E quiet | 0.01 | 0.02 | 0.01 | 0.01 |
mlVAR_EB | N worried | N depressed | 0.01 | -0.04 | 0.04 | 0.07 |
mlVAR_EB | N worried | N relaxed | -0.05 | 0.02 | -0.05 | -0.05 |
mlVAR_EB | N worried | N worried | 0.08 | 0.12 | 0.18 | 0.20 |
scaled | A kind | A kind | 0.00 | 0.00 | 0.00 | 0.17 |
scaled | A kind | A rude | 0.14 | 0.00 | 0.00 | 0.08 |
scaled | A kind | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A kind | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A kind | E outgoing | 0.00 | 0.00 | 0.00 | 0.06 |
scaled | A kind | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A kind | N depressed | 0.00 | 0.00 | 0.12 | 0.00 |
scaled | A kind | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A kind | N worried | 0.00 | 0.00 | 0.01 | 0.00 |
scaled | A rude | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | A rude | 0.00 | 0.00 | -0.05 | 0.00 |
scaled | A rude | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A rude | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C lazy | A kind | 0.00 | 0.10 | 0.21 | 0.00 |
scaled | C lazy | A rude | 0.30 | 0.00 | 0.40 | 0.00 |
scaled | C lazy | C lazy | 0.00 | 0.00 | 0.20 | -0.13 |
scaled | C lazy | C reliable | 0.00 | 0.00 | -0.44 | -0.15 |
scaled | C lazy | E outgoing | 0.00 | 0.00 | 0.00 | 0.04 |
scaled | C lazy | E quiet | 0.00 | 0.00 | -0.17 | 0.00 |
scaled | C lazy | N depressed | 0.00 | 0.00 | 0.05 | 0.00 |
scaled | C lazy | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C lazy | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | A rude | 0.58 | 0.00 | 0.22 | 0.00 |
scaled | C reliable | C lazy | 0.00 | 0.00 | 0.00 | 0.19 |
scaled | C reliable | C reliable | 0.00 | 0.00 | -0.36 | 0.00 |
scaled | C reliable | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C reliable | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E outgoing | A kind | 0.00 | -0.08 | -0.21 | -0.13 |
scaled | E outgoing | A rude | -0.31 | 0.00 | -0.02 | 0.00 |
scaled | E outgoing | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E outgoing | C reliable | 0.00 | 0.00 | -0.04 | 0.00 |
scaled | E outgoing | E outgoing | 0.00 | 0.00 | 0.00 | -0.02 |
scaled | E outgoing | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E outgoing | N depressed | 0.00 | 0.00 | -0.18 | 0.00 |
scaled | E outgoing | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E outgoing | N worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E quiet | A kind | 0.00 | 0.00 | 0.21 | 0.00 |
scaled | E quiet | A rude | 0.20 | -0.02 | 0.15 | 0.00 |
scaled | E quiet | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E quiet | C reliable | 0.00 | 0.00 | 0.48 | 0.00 |
scaled | E quiet | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E quiet | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E quiet | N depressed | 0.00 | 0.00 | 0.04 | 0.00 |
scaled | E quiet | N relaxed | 0.00 | 0.00 | -0.19 | -0.13 |
scaled | E quiet | N worried | 0.00 | 0.00 | 0.00 | -0.05 |
scaled | N depressed | A kind | 0.00 | 0.00 | -0.04 | 0.00 |
scaled | N depressed | A rude | 0.30 | 0.18 | 0.00 | 0.00 |
scaled | N depressed | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N depressed | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N depressed | E outgoing | 0.00 | 0.00 | -0.01 | 0.10 |
scaled | N depressed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N depressed | N depressed | 0.00 | 0.00 | 0.02 | 0.28 |
scaled | N depressed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N depressed | N worried | 0.00 | 0.00 | 0.10 | 0.20 |
scaled | N relaxed | A kind | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | A rude | -0.62 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | C lazy | 0.00 | 0.00 | 0.07 | 0.00 |
scaled | N relaxed | C reliable | 0.00 | 0.00 | 0.15 | 0.00 |
scaled | N relaxed | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | N depressed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | N relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N relaxed | N worried | 0.00 | 0.00 | -0.05 | 0.00 |
scaled | N worried | A kind | 0.00 | -0.31 | 0.17 | -0.07 |
scaled | N worried | A rude | -0.15 | 0.00 | 0.35 | 0.00 |
scaled | N worried | C lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N worried | C reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N worried | E outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N worried | E quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | N worried | N depressed | 0.00 | 0.00 | 0.41 | 0.04 |
scaled | N worried | N relaxed | 0.00 | 0.00 | -0.34 | -0.06 |
scaled | N worried | N worried | 0.00 | 0.00 | 0.06 | 0.00 |
unregularized | A kind | A kind | -0.01 | -0.08 | 0.05 | 0.33 |
unregularized | A kind | A rude | 0.11 | 0.22 | -0.04 | 0.23 |
unregularized | A kind | C lazy | 0.01 | 0.16 | 0.00 | 0.27 |
unregularized | A kind | C reliable | -0.05 | -0.27 | -0.02 | 0.06 |
unregularized | A kind | E outgoing | -0.05 | -0.09 | -0.13 | 0.23 |
unregularized | A kind | E quiet | 0.25 | 0.13 | 0.14 | -0.10 |
unregularized | A kind | N depressed | -0.12 | 0.02 | 0.16 | 0.03 |
unregularized | A kind | N relaxed | 0.00 | 0.22 | -0.13 | 0.29 |
unregularized | A kind | N worried | -0.02 | -0.13 | 0.16 | -0.16 |
unregularized | A rude | A kind | 0.14 | -0.19 | -0.04 | -0.26 |
unregularized | A rude | A rude | 0.07 | 0.32 | -0.12 | 0.06 |
unregularized | A rude | C lazy | -0.15 | 0.06 | -0.13 | 0.28 |
unregularized | A rude | C reliable | 0.18 | -0.06 | -0.10 | 0.18 |
unregularized | A rude | E outgoing | -0.01 | -0.15 | 0.04 | -0.05 |
unregularized | A rude | E quiet | -0.15 | 0.05 | -0.20 | 0.30 |
unregularized | A rude | N depressed | -0.03 | 0.18 | -0.06 | -0.07 |
unregularized | A rude | N relaxed | 0.04 | -0.05 | -0.09 | 0.46 |
unregularized | A rude | N worried | -0.14 | 0.23 | 0.05 | -0.05 |
unregularized | C lazy | A kind | 0.04 | 0.29 | 0.25 | -0.15 |
unregularized | C lazy | A rude | 0.22 | 0.30 | 0.27 | -0.01 |
unregularized | C lazy | C lazy | 0.17 | 0.00 | 0.27 | -0.19 |
unregularized | C lazy | C reliable | -0.04 | -0.02 | -0.42 | -0.14 |
unregularized | C lazy | E outgoing | -0.19 | 0.03 | 0.08 | 0.11 |
unregularized | C lazy | E quiet | 0.09 | -0.12 | -0.32 | 0.13 |
unregularized | C lazy | N depressed | 0.06 | -0.10 | 0.20 | 0.00 |
unregularized | C lazy | N relaxed | -0.06 | -0.10 | 0.19 | -0.03 |
unregularized | C lazy | N worried | 0.09 | 0.04 | -0.11 | 0.16 |
unregularized | C reliable | A kind | 0.05 | 0.16 | -0.02 | -0.12 |
unregularized | C reliable | A rude | 0.41 | 0.23 | 0.16 | -0.11 |
unregularized | C reliable | C lazy | 0.08 | -0.10 | -0.12 | 0.12 |
unregularized | C reliable | C reliable | -0.01 | 0.14 | -0.19 | -0.21 |
unregularized | C reliable | E outgoing | -0.05 | 0.09 | -0.02 | 0.00 |
unregularized | C reliable | E quiet | 0.05 | -0.10 | -0.23 | -0.15 |
unregularized | C reliable | N depressed | 0.11 | -0.10 | -0.12 | 0.12 |
unregularized | C reliable | N relaxed | -0.11 | -0.03 | -0.12 | -0.25 |
unregularized | C reliable | N worried | 0.17 | -0.02 | 0.04 | 0.13 |
unregularized | E outgoing | A kind | 0.01 | -0.29 | -0.24 | -0.25 |
unregularized | E outgoing | A rude | -0.19 | 0.11 | -0.05 | 0.06 |
unregularized | E outgoing | C lazy | -0.16 | 0.28 | -0.11 | 0.04 |
unregularized | E outgoing | C reliable | 0.11 | -0.28 | -0.08 | -0.17 |
unregularized | E outgoing | E outgoing | -0.04 | -0.13 | 0.08 | -0.11 |
unregularized | E outgoing | E quiet | -0.11 | -0.01 | -0.23 | -0.07 |
unregularized | E outgoing | N depressed | -0.09 | 0.21 | -0.11 | 0.04 |
unregularized | E outgoing | N relaxed | 0.01 | -0.14 | -0.22 | 0.06 |
unregularized | E outgoing | N worried | -0.05 | 0.35 | 0.16 | -0.15 |
unregularized | E quiet | A kind | -0.05 | -0.10 | 0.11 | 0.13 |
unregularized | E quiet | A rude | 0.13 | 0.03 | -0.03 | 0.07 |
unregularized | E quiet | C lazy | -0.16 | 0.21 | -0.03 | 0.27 |
unregularized | E quiet | C reliable | 0.07 | -0.34 | 0.15 | 0.00 |
unregularized | E quiet | E outgoing | -0.06 | -0.13 | 0.10 | 0.07 |
unregularized | E quiet | E quiet | -0.03 | 0.10 | 0.10 | -0.21 |
unregularized | E quiet | N depressed | -0.21 | 0.20 | 0.14 | -0.08 |
unregularized | E quiet | N relaxed | 0.01 | -0.07 | -0.06 | -0.04 |
unregularized | E quiet | N worried | -0.07 | 0.29 | 0.01 | -0.29 |
unregularized | N depressed | A kind | 0.11 | -0.19 | -0.13 | -0.12 |
unregularized | N depressed | A rude | 0.26 | 0.48 | 0.08 | -0.04 |
unregularized | N depressed | C lazy | 0.09 | -0.02 | -0.09 | -0.13 |
unregularized | N depressed | C reliable | -0.07 | 0.04 | 0.11 | -0.09 |
unregularized | N depressed | E outgoing | 0.05 | -0.28 | -0.04 | 0.17 |
unregularized | N depressed | E quiet | -0.19 | 0.00 | -0.01 | 0.11 |
unregularized | N depressed | N depressed | 0.28 | 0.03 | -0.04 | 0.29 |
unregularized | N depressed | N relaxed | 0.13 | -0.23 | -0.12 | -0.05 |
unregularized | N depressed | N worried | 0.11 | 0.03 | 0.08 | 0.25 |
unregularized | N relaxed | A kind | -0.03 | -0.11 | -0.11 | -0.04 |
unregularized | N relaxed | A rude | -0.47 | -0.13 | 0.07 | 0.03 |
unregularized | N relaxed | C lazy | -0.06 | 0.03 | -0.07 | -0.01 |
unregularized | N relaxed | C reliable | -0.01 | 0.04 | 0.17 | -0.14 |
unregularized | N relaxed | E outgoing | 0.35 | -0.22 | -0.05 | 0.00 |
unregularized | N relaxed | E quiet | -0.17 | 0.27 | -0.09 | 0.18 |
unregularized | N relaxed | N depressed | 0.08 | 0.00 | -0.12 | 0.12 |
unregularized | N relaxed | N relaxed | -0.03 | 0.01 | -0.21 | 0.03 |
unregularized | N relaxed | N worried | -0.07 | -0.08 | 0.08 | -0.15 |
unregularized | N worried | A kind | -0.20 | -0.33 | 0.07 | -0.09 |
unregularized | N worried | A rude | -0.13 | -0.12 | 0.30 | 0.06 |
unregularized | N worried | C lazy | -0.29 | 0.03 | -0.11 | 0.01 |
unregularized | N worried | C reliable | 0.17 | -0.02 | 0.06 | 0.02 |
unregularized | N worried | E outgoing | 0.28 | -0.19 | -0.09 | -0.01 |
unregularized | N worried | E quiet | -0.07 | 0.23 | -0.30 | 0.17 |
unregularized | N worried | N depressed | -0.07 | 0.01 | 0.21 | 0.13 |
unregularized | N worried | N relaxed | -0.24 | 0.10 | -0.47 | -0.03 |
unregularized | N worried | N worried | 0.10 | -0.08 | 0.19 | 0.02 |
gVAR_fit %>% filter(SID %in% c("22652", "91339")) %>%
unnest(contemp) %>% select(SID, wave, lambda_scale, Var1, Var2, weight) %>%
unite(temp, SID, wave, sep = ".") %>%
spread(key = temp, value = weight) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
col.names = c("Network Type", "Var1", "Var2", "W1", "W2", "W1", "W2"),
align = c("l", "l", "l", rep("c", 4)),
caption = "Contemporaneous Networks") %>%
add_header_above(c(" " = 3, "S1" = 2,"S2" = 2)) %>%
kable_styling(bootstrap_options = c("striped"),full_width = T) %>%
scroll_box(width = "750px", height = "400px")
Network Type | Var1 | Var2 | W1 | W2 | W1 | W2 |
---|---|---|---|---|---|---|
.25 | A_kind | A_rude | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_kind | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_kind | C_reliable | 0.00 | 0.00 | 0.00 | 0.05 |
.25 | A_kind | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_kind | E_quiet | -0.03 | -0.07 | 0.01 | -0.14 |
.25 | A_kind | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_kind | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_kind | N_worried | 0.00 | 0.00 | 0.00 | -0.14 |
.25 | A_rude | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_rude | C_reliable | 0.00 | 0.00 | 0.00 | 0.18 |
.25 | A_rude | E_outgoing | 0.00 | 0.00 | -0.04 | 0.00 |
.25 | A_rude | E_quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_rude | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_rude | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | A_rude | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | C_lazy | C_reliable | -0.59 | -0.59 | 0.00 | 0.00 |
.25 | C_lazy | E_outgoing | -0.11 | 0.00 | -0.23 | 0.00 |
.25 | C_lazy | E_quiet | 0.06 | 0.00 | 0.00 | 0.00 |
.25 | C_lazy | N_depressed | 0.00 | 0.00 | 0.00 | -0.24 |
.25 | C_lazy | N_relaxed | 0.23 | 0.00 | 0.49 | 0.35 |
.25 | C_lazy | N_worried | 0.00 | 0.00 | 0.00 | -0.18 |
.25 | C_reliable | E_outgoing | 0.20 | 0.00 | 0.12 | 0.00 |
.25 | C_reliable | E_quiet | 0.00 | 0.00 | 0.32 | 0.00 |
.25 | C_reliable | N_depressed | -0.35 | 0.00 | -0.14 | 0.00 |
.25 | C_reliable | N_relaxed | 0.00 | 0.00 | -0.01 | 0.00 |
.25 | C_reliable | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
.25 | E_outgoing | E_quiet | -0.32 | -0.52 | -0.23 | -0.12 |
.25 | E_outgoing | N_depressed | 0.00 | 0.00 | -0.23 | 0.00 |
.25 | E_outgoing | N_relaxed | 0.03 | 0.00 | 0.00 | 0.00 |
.25 | E_outgoing | N_worried | -0.10 | 0.00 | -0.04 | 0.00 |
.25 | E_quiet | N_depressed | 0.00 | 0.00 | 0.20 | 0.00 |
.25 | E_quiet | N_relaxed | 0.00 | 0.00 | 0.01 | 0.00 |
.25 | E_quiet | N_worried | 0.00 | 0.00 | 0.12 | 0.00 |
.25 | N_depressed | N_relaxed | 0.00 | 0.00 | -0.29 | -0.08 |
.25 | N_depressed | N_worried | 0.19 | 0.08 | 0.06 | 0.01 |
.25 | N_relaxed | N_worried | -0.22 | -0.10 | -0.42 | -0.43 |
.5 | A_kind | A_rude | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_kind | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_kind | C_reliable | 0.00 | 0.00 | 0.00 | 0.02 |
.5 | A_kind | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_kind | E_quiet | -0.10 | -0.02 | 0.00 | -0.13 |
.5 | A_kind | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_kind | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_kind | N_worried | -0.05 | 0.00 | 0.00 | -0.12 |
.5 | A_rude | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_rude | C_reliable | 0.00 | 0.00 | 0.00 | 0.05 |
.5 | A_rude | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_rude | E_quiet | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_rude | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_rude | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | A_rude | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C_lazy | C_reliable | -0.60 | -0.54 | 0.00 | 0.00 |
.5 | C_lazy | E_outgoing | -0.11 | 0.00 | 0.00 | 0.00 |
.5 | C_lazy | E_quiet | 0.06 | 0.00 | 0.00 | 0.00 |
.5 | C_lazy | N_depressed | 0.00 | 0.00 | 0.00 | -0.04 |
.5 | C_lazy | N_relaxed | 0.29 | 0.00 | 0.37 | 0.24 |
.5 | C_lazy | N_worried | 0.00 | 0.00 | 0.00 | -0.16 |
.5 | C_reliable | E_outgoing | 0.21 | 0.00 | 0.00 | 0.00 |
.5 | C_reliable | E_quiet | 0.00 | 0.00 | 0.13 | 0.00 |
.5 | C_reliable | N_depressed | -0.37 | 0.00 | 0.00 | 0.00 |
.5 | C_reliable | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | C_reliable | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E_outgoing | E_quiet | -0.34 | -0.49 | -0.01 | 0.00 |
.5 | E_outgoing | N_depressed | 0.00 | 0.00 | -0.03 | 0.00 |
.5 | E_outgoing | N_relaxed | 0.09 | 0.00 | 0.00 | 0.00 |
.5 | E_outgoing | N_worried | -0.11 | 0.00 | 0.00 | 0.00 |
.5 | E_quiet | N_depressed | -0.01 | 0.00 | 0.00 | 0.00 |
.5 | E_quiet | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | E_quiet | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
.5 | N_depressed | N_relaxed | 0.00 | 0.00 | -0.31 | -0.10 |
.5 | N_depressed | N_worried | 0.25 | 0.00 | 0.00 | 0.25 |
.5 | N_relaxed | N_worried | -0.28 | -0.03 | -0.19 | -0.34 |
association | A_kind | A_rude | -0.13 | -0.24 | 0.12 | 0.19 |
association | A_kind | C_lazy | 0.00 | -0.04 | 0.04 | 0.13 |
association | A_kind | C_reliable | 0.07 | 0.01 | -0.13 | 0.38 |
association | A_kind | E_outgoing | 0.11 | 0.46 | -0.22 | 0.10 |
association | A_kind | E_quiet | -0.30 | -0.42 | 0.06 | -0.39 |
association | A_kind | N_depressed | -0.09 | -0.25 | 0.38 | -0.28 |
association | A_kind | N_relaxed | 0.12 | 0.20 | -0.30 | 0.21 |
association | A_kind | N_worried | -0.32 | -0.12 | 0.24 | -0.40 |
association | A_rude | C_lazy | 0.08 | -0.12 | 0.11 | 0.08 |
association | A_rude | C_reliable | -0.32 | 0.17 | -0.20 | 0.52 |
association | A_rude | E_outgoing | -0.08 | -0.18 | -0.21 | 0.01 |
association | A_rude | E_quiet | 0.05 | 0.06 | -0.16 | -0.06 |
association | A_rude | N_depressed | 0.15 | -0.09 | 0.38 | -0.10 |
association | A_rude | N_relaxed | -0.13 | -0.13 | -0.29 | 0.29 |
association | A_rude | N_worried | 0.14 | 0.30 | 0.19 | -0.33 |
association | C_lazy | C_reliable | -0.79 | -0.82 | -0.18 | -0.11 |
association | C_lazy | E_outgoing | -0.46 | -0.19 | -0.17 | -0.03 |
association | C_lazy | E_quiet | 0.29 | 0.10 | -0.12 | -0.09 |
association | C_lazy | N_depressed | 0.39 | -0.06 | -0.28 | -0.37 |
association | C_lazy | N_relaxed | 0.42 | 0.23 | 0.62 | 0.52 |
association | C_lazy | N_worried | 0.08 | 0.20 | -0.37 | -0.47 |
association | C_reliable | E_outgoing | 0.54 | 0.16 | 0.16 | 0.02 |
association | C_reliable | E_quiet | -0.23 | -0.12 | 0.49 | -0.22 |
association | C_reliable | N_depressed | -0.63 | 0.01 | 0.00 | -0.02 |
association | C_reliable | N_relaxed | -0.11 | -0.11 | -0.24 | 0.00 |
association | C_reliable | N_worried | -0.24 | -0.20 | -0.02 | -0.02 |
association | E_outgoing | E_quiet | -0.49 | -0.65 | -0.33 | -0.40 |
association | E_outgoing | N_depressed | -0.32 | -0.21 | -0.40 | -0.17 |
association | E_outgoing | N_relaxed | 0.11 | 0.20 | 0.05 | -0.15 |
association | E_outgoing | N_worried | -0.31 | -0.17 | -0.29 | 0.22 |
association | E_quiet | N_depressed | 0.03 | 0.01 | 0.25 | 0.21 |
association | E_quiet | N_relaxed | 0.09 | -0.02 | -0.06 | 0.02 |
association | E_quiet | N_worried | 0.08 | 0.08 | 0.27 | 0.20 |
association | N_depressed | N_relaxed | -0.09 | -0.10 | -0.67 | -0.46 |
association | N_depressed | N_worried | 0.42 | 0.40 | 0.49 | 0.53 |
association | N_relaxed | N_worried | -0.43 | -0.40 | -0.67 | -0.67 |
gimme | A_kind | A_rude | 0.00 | 0.00 | 0.05 | -0.16 |
gimme | A_kind | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_kind | C_reliable | 0.00 | 0.00 | -0.20 | 0.24 |
gimme | A_kind | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_kind | E_quiet | -0.18 | -0.22 | 0.00 | -0.22 |
gimme | A_kind | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_kind | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_kind | N_worried | 0.00 | 0.00 | 0.00 | -0.25 |
gimme | A_rude | C_lazy | 0.00 | 0.00 | 0.24 | 0.00 |
gimme | A_rude | C_reliable | 0.00 | 0.00 | -0.20 | 0.27 |
gimme | A_rude | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_rude | E_quiet | 0.00 | 0.00 | 0.38 | 0.00 |
gimme | A_rude | N_depressed | 0.00 | 0.00 | 0.19 | 0.00 |
gimme | A_rude | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | A_rude | N_worried | 0.00 | 0.17 | 0.00 | 0.00 |
gimme | C_lazy | C_reliable | -0.44 | -0.47 | 0.00 | 0.00 |
gimme | C_lazy | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C_lazy | E_quiet | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C_lazy | N_depressed | 0.00 | 0.00 | 0.00 | -0.12 |
gimme | C_lazy | N_relaxed | 0.24 | 0.36 | 0.27 | 0.24 |
gimme | C_lazy | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | C_reliable | E_outgoing | 0.27 | 0.00 | 0.00 | 0.00 |
gimme | C_reliable | E_quiet | 0.00 | 0.00 | 0.51 | 0.00 |
gimme | C_reliable | N_depressed | -0.29 | 0.00 | -0.34 | 0.00 |
gimme | C_reliable | N_relaxed | 0.12 | 0.31 | -0.41 | 0.00 |
gimme | C_reliable | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E_outgoing | E_quiet | -0.25 | -0.32 | -0.21 | -0.27 |
gimme | E_outgoing | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E_outgoing | N_relaxed | 0.00 | 0.00 | 0.00 | 0.28 |
gimme | E_outgoing | N_worried | 0.00 | 0.00 | 0.00 | 0.33 |
gimme | E_quiet | N_depressed | 0.00 | 0.00 | 0.40 | 0.00 |
gimme | E_quiet | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
gimme | E_quiet | N_worried | 0.00 | 0.00 | 0.00 | 0.15 |
gimme | N_depressed | N_relaxed | 0.00 | 0.00 | -0.24 | 0.00 |
gimme | N_depressed | N_worried | 0.18 | 0.23 | -0.25 | 0.26 |
gimme | N_relaxed | N_worried | -0.23 | -0.27 | -0.31 | -0.54 |
mlVAR_EB | A_kind | A_rude | -0.11 | -0.18 | -0.10 | -0.05 |
mlVAR_EB | A_kind | C_lazy | -0.03 | -0.03 | 0.00 | 0.01 |
mlVAR_EB | A_kind | C_reliable | 0.13 | 0.10 | 0.10 | 0.21 |
mlVAR_EB | A_kind | E_outgoing | 0.10 | 0.18 | 0.08 | 0.15 |
mlVAR_EB | A_kind | E_quiet | -0.14 | -0.08 | -0.08 | -0.08 |
mlVAR_EB | A_kind | N_depressed | -0.04 | -0.10 | 0.09 | -0.08 |
mlVAR_EB | A_kind | N_relaxed | 0.08 | 0.08 | 0.06 | 0.07 |
mlVAR_EB | A_kind | N_worried | -0.01 | 0.01 | 0.00 | -0.09 |
mlVAR_EB | A_rude | C_lazy | 0.03 | 0.05 | 0.06 | 0.05 |
mlVAR_EB | A_rude | C_reliable | -0.05 | -0.02 | -0.09 | -0.02 |
mlVAR_EB | A_rude | E_outgoing | 0.03 | 0.02 | 0.03 | 0.02 |
mlVAR_EB | A_rude | E_quiet | -0.09 | -0.08 | -0.09 | -0.07 |
mlVAR_EB | A_rude | N_depressed | 0.05 | -0.04 | 0.17 | 0.05 |
mlVAR_EB | A_rude | N_relaxed | -0.04 | -0.05 | -0.08 | -0.04 |
mlVAR_EB | A_rude | N_worried | 0.03 | 0.05 | 0.03 | -0.01 |
mlVAR_EB | C_lazy | C_reliable | -0.24 | -0.52 | -0.13 | -0.21 |
mlVAR_EB | C_lazy | E_outgoing | -0.05 | -0.03 | -0.17 | -0.04 |
mlVAR_EB | C_lazy | E_quiet | -0.06 | 0.00 | -0.02 | -0.01 |
mlVAR_EB | C_lazy | N_depressed | 0.08 | 0.05 | 0.05 | 0.05 |
mlVAR_EB | C_lazy | N_relaxed | 0.32 | 0.23 | 0.36 | 0.30 |
mlVAR_EB | C_lazy | N_worried | 0.01 | -0.01 | -0.03 | -0.05 |
mlVAR_EB | C_reliable | E_outgoing | 0.05 | 0.04 | 0.09 | 0.05 |
mlVAR_EB | C_reliable | E_quiet | 0.04 | 0.03 | 0.03 | -0.06 |
mlVAR_EB | C_reliable | N_depressed | -0.28 | -0.07 | -0.12 | -0.11 |
mlVAR_EB | C_reliable | N_relaxed | 0.05 | 0.00 | -0.02 | 0.03 |
mlVAR_EB | C_reliable | N_worried | -0.04 | -0.05 | -0.02 | -0.06 |
mlVAR_EB | E_outgoing | E_quiet | -0.39 | -0.59 | -0.24 | -0.35 |
mlVAR_EB | E_outgoing | N_depressed | -0.03 | -0.09 | -0.12 | -0.09 |
mlVAR_EB | E_outgoing | N_relaxed | 0.13 | 0.13 | 0.04 | 0.05 |
mlVAR_EB | E_outgoing | N_worried | -0.07 | -0.04 | -0.07 | -0.01 |
mlVAR_EB | E_quiet | N_depressed | 0.01 | -0.01 | 0.03 | 0.03 |
mlVAR_EB | E_quiet | N_relaxed | -0.03 | 0.05 | -0.01 | 0.03 |
mlVAR_EB | E_quiet | N_worried | 0.00 | 0.02 | 0.03 | 0.03 |
mlVAR_EB | N_depressed | N_relaxed | -0.15 | -0.08 | -0.28 | -0.19 |
mlVAR_EB | N_depressed | N_worried | 0.17 | 0.31 | 0.17 | 0.20 |
mlVAR_EB | N_relaxed | N_worried | -0.37 | -0.39 | -0.38 | -0.43 |
scaled | A_kind | A_rude | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | C_reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | E_quiet | 0.00 | 0.00 | 0.00 | -0.01 |
scaled | A_kind | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_kind | N_worried | 0.00 | 0.00 | 0.00 | -0.01 |
scaled | A_rude | C_lazy | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | C_reliable | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | E_outgoing | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | E_quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | N_depressed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | A_rude | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C_lazy | C_reliable | -0.48 | -0.38 | 0.00 | 0.00 |
scaled | C_lazy | E_outgoing | -0.10 | 0.00 | -0.09 | 0.00 |
scaled | C_lazy | E_quiet | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C_lazy | N_depressed | 0.00 | 0.00 | 0.00 | -0.14 |
scaled | C_lazy | N_relaxed | 0.00 | 0.00 | 0.42 | 0.27 |
scaled | C_lazy | N_worried | 0.00 | 0.00 | 0.00 | -0.18 |
scaled | C_reliable | E_outgoing | 0.06 | 0.00 | 0.00 | 0.00 |
scaled | C_reliable | E_quiet | 0.00 | 0.00 | 0.03 | 0.00 |
scaled | C_reliable | N_depressed | -0.11 | 0.00 | 0.00 | 0.00 |
scaled | C_reliable | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | C_reliable | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E_outgoing | E_quiet | -0.08 | -0.39 | -0.15 | 0.00 |
scaled | E_outgoing | N_depressed | 0.00 | 0.00 | -0.07 | 0.00 |
scaled | E_outgoing | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E_outgoing | N_worried | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E_quiet | N_depressed | 0.00 | 0.00 | 0.11 | 0.00 |
scaled | E_quiet | N_relaxed | 0.00 | 0.00 | 0.00 | 0.00 |
scaled | E_quiet | N_worried | 0.00 | 0.00 | 0.05 | 0.00 |
scaled | N_depressed | N_relaxed | 0.00 | 0.00 | -0.13 | -0.04 |
scaled | N_depressed | N_worried | 0.00 | 0.00 | 0.00 | 0.02 |
scaled | N_relaxed | N_worried | 0.00 | 0.00 | -0.26 | -0.34 |
unregularized | A_kind | A_rude | -0.22 | -0.23 | -0.80 | -0.35 |
unregularized | A_kind | C_lazy | -0.03 | -0.18 | 0.53 | 0.10 |
unregularized | A_kind | C_reliable | -0.03 | -0.10 | -0.77 | 0.49 |
unregularized | A_kind | E_outgoing | -0.07 | -0.02 | -0.53 | -0.23 |
unregularized | A_kind | E_quiet | -0.34 | -0.35 | 0.81 | -0.19 |
unregularized | A_kind | N_depressed | -0.05 | -0.28 | -0.73 | -0.17 |
unregularized | A_kind | N_relaxed | -0.05 | 0.39 | -0.81 | -0.16 |
unregularized | A_kind | N_worried | -0.32 | 0.30 | -0.62 | -0.28 |
unregularized | A_rude | C_lazy | -0.32 | -0.21 | 0.61 | 0.05 |
unregularized | A_rude | C_reliable | -0.30 | 0.10 | -0.64 | 0.75 |
unregularized | A_rude | E_outgoing | -0.14 | -0.06 | -0.42 | 0.10 |
unregularized | A_rude | E_quiet | -0.22 | -0.20 | 0.72 | 0.22 |
unregularized | A_rude | N_depressed | -0.25 | -0.48 | -0.47 | 0.08 |
unregularized | A_rude | N_relaxed | 0.03 | 0.30 | -0.62 | 0.05 |
unregularized | A_rude | N_worried | -0.33 | 0.63 | -0.45 | -0.23 |
unregularized | C_lazy | C_reliable | -0.67 | -0.74 | 0.41 | -0.27 |
unregularized | C_lazy | E_outgoing | -0.28 | -0.22 | 0.06 | -0.05 |
unregularized | C_lazy | E_quiet | -0.10 | -0.21 | -0.59 | 0.26 |
unregularized | C_lazy | N_depressed | -0.25 | -0.30 | 0.27 | -0.39 |
unregularized | C_lazy | N_relaxed | 0.56 | 0.47 | 0.54 | 0.30 |
unregularized | C_lazy | N_worried | 0.01 | 0.33 | 0.39 | 0.00 |
unregularized | C_reliable | E_outgoing | 0.18 | -0.03 | -0.33 | -0.01 |
unregularized | C_reliable | E_quiet | 0.07 | -0.03 | 0.81 | -0.11 |
unregularized | C_reliable | N_depressed | -0.58 | 0.01 | -0.82 | -0.11 |
unregularized | C_reliable | N_relaxed | 0.18 | 0.24 | -0.81 | -0.03 |
unregularized | C_reliable | N_worried | 0.05 | -0.02 | -0.67 | 0.12 |
unregularized | E_outgoing | E_quiet | -0.52 | -0.60 | 0.28 | -0.66 |
unregularized | E_outgoing | N_depressed | -0.03 | -0.29 | -0.55 | -0.64 |
unregularized | E_outgoing | N_relaxed | 0.37 | 0.20 | -0.54 | -0.13 |
unregularized | E_outgoing | N_worried | -0.24 | 0.11 | -0.36 | 0.32 |
unregularized | E_quiet | N_depressed | 0.00 | -0.37 | 0.71 | -0.28 |
unregularized | E_quiet | N_relaxed | 0.24 | 0.25 | 0.77 | -0.09 |
unregularized | E_quiet | N_worried | -0.20 | 0.27 | 0.74 | 0.34 |
unregularized | N_depressed | N_relaxed | -0.01 | 0.31 | -0.87 | -0.27 |
unregularized | N_depressed | N_worried | 0.18 | 0.59 | -0.68 | 0.10 |
unregularized | N_relaxed | N_worried | -0.28 | -0.54 | -0.79 | -0.64 |
As with between-person effects, we can calculate centrality for individuals.
# create function to save both centrality measure and variable names to a data frame.
centrality_fun <- function(x, SID, wave, l) {
data <- x %>%
select(from, to, weight) %>%
mutate(weight = as.numeric(weight))
centrality <- centrality_auto(data.frame(data))
df <- centrality$node.centrality %>% data.frame() %>%
mutate(var = rownames(.))
if(!"InStrength" %in% colnames(df)){
df <- df %>% select(var, Betweenness, Closeness) %>%
bind_cols(data.frame(matrix(rep(0,9*4), nrow = 9, ncol = 4)) %>%
setNames(c("InStrength", "OutStrength", "OutExpectedInfluence", "InExpectedInfluence")))
}
return(df)
}
contemp_cen_fun <- function(x){
centrality <- centrality_auto(x)$node.centrality %>%
data.frame() %>%
mutate(var = rownames(.))
return(centrality)
}
# 59057
####### PDC's #######
# calculate centrality for each subject for each wave and save them to a list #
gVAR_fit <- gVAR_fit %>%
mutate(temp_centrality = map(temp, centrality_fun),
contemp_centrality = map(contemp_mat, contemp_cen_fun))
# save data for web app
gVAR_data <- gVAR_fit %>%
select(SID, wave, lambda_scale, gVAR_fit, temp_centrality, contemp_centrality) %>%
mutate(PDC = map(gVAR_fit, ~.$PDC),
PCC = map(gVAR_fit, ~.$PCC)) %>%
select(-gVAR_fit)
# save(gVAR_data, temp_long, contemp_long, file = sprintf("%s/R/app_data.RData", res_path))
# save all lagged centrality to a long format df
(temp_centrality <- gVAR_fit %>%
unnest(temp_centrality, .drop = T) %>%
# select(-Degree) %>%
mutate(type = "Lagged"))
# save all contemporaneous centrality to a long format df
(contemp_centrality <- gVAR_fit %>%
unnest(contemp_centrality, .drop = T) %>%
select(-Degree) %>%
mutate(type = "Contemporaneous"))
# function to create individual level centrality plots for each person
centrality_Plot_fun <- function(x, ls){
centrality %>%
filter(SID %in% x & grepl("trength", measure) & lambda_scale == ls) %>%
arrange(measure, wave) %>%
ggplot(aes(x = var, y = z, group = wave))+
geom_line(aes(linetype = wave), color = "black", size = .3) +
geom_point(aes(shape = wave), size = 2) +
labs(x = NULL, y = "z-score", linetype = "Wave", shape = "Wave") +
scale_y_continuous(limits = c(-3,3), breaks = seq(-3,3,1)) +
geom_hline(aes(yintercept = 0)) +
coord_flip() +
facet_grid(SID~type + measure) +
theme_classic()+
theme(axis.text = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom")
}
centrality <- temp_centrality %>%
gather(key = measure, value = centrality,
Betweenness:OutStrength) %>%
group_by(SID, wave, lambda_scale, measure) %>%
mutate(z = scale(centrality)) %>%
ungroup() %>%
full_join(contemp_centrality %>%
gather(key = measure, value = centrality,
Betweenness:Strength) %>%
group_by(SID, wave, lambda_scale, measure) %>%
mutate(z = scale(centrality)) %>%
ungroup())
# generate sample plot for subjects 1 & 2
centrality %>%
filter(SID %in% c("22652", "91339") & grepl("trength", measure) & lambda_scale == ".25") %>%
mutate(SID = recode(SID, `22652` = "1", `91339` = "2"),
wave = as.character(wave)) %>%
arrange(measure, wave) %>%
ggplot(aes(x = var, y = z, group = wave))+
geom_line(aes(linetype = wave), color = "black", size = .3) +
geom_point(aes(shape = wave), size = 2) +
labs(x = NULL, y = "z-score", linetype = "Wave", shape = "Wave") +
scale_y_continuous(limits = c(-3,3), breaks = seq(-3,3,1)) +
geom_hline(aes(yintercept = 0)) +
coord_flip() +
facet_grid(SID~type + measure) +
theme_classic()+
theme(axis.text = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom")
# ggsave(sprintf("%s/results/plots/centrality_plot_1+2.png", res_path), width = 5, height = 5)
cor_fun <- function(x){
results <- cor(x$`1`, x$`2`, use = "pairwise", method = "spearman")
}
# short fun to convert contempaneous results to long format df
# different from previous in that we explicitly want to keep NAs
contemp_long_fun_na <- function(fit){
PCC <- fit$PCC
PCC <- PCC[,order(colnames(PCC))]
PCC <- PCC[order(rownames(PCC)),]
PCC[lower.tri(PCC, diag = T)] <- NA
vars <- rownames(PCC)
PCC.long <- tbl_df(PCC) %>%
mutate(Var1 = vars,
type = "Contemporaneous") %>%
gather(key = Var2, value = weight, A_kind:N_worried) %>%
unite(var, Var1, Var2, sep = ".", remove = F)
}
gVAR_fit <- gVAR_fit %>%
mutate(contemp_long_na = map(gVAR_fit, possibly(contemp_long_fun_na, NA_real_)))
# assign ranks to edges and caluclate rank-order correlations
contemp_cors_long <- contemp_long %>%
filter(SID %in% w1w2_subs) %>%
group_by(wave, lambda_scale, Var1, Var2) %>%
mutate(rank = min_rank(desc(weight))) %>%
ungroup() %>%
select(SID, wave, lambda_scale, Var1, Var2, type, rank) %>%
spread(key = wave, value = rank) %>%
group_by(lambda_scale, Var1, Var2) %>%
nest() %>%
mutate(r = map(data, cor_fun)) %>%
unnest(r, .drop = T) %>%
mutate(measure = "Rank-Order", Type = "Contemporaneous")
temp_cors_long <- temp_long %>%
filter(SID %in% w1w2_subs) %>%
group_by(wave, lambda_scale, from, to) %>%
mutate(rank = dense_rank(desc(weight))) %>%
ungroup() %>%
select(SID, wave, lambda_scale, from, to , rank) %>%
spread(key = wave, value = rank) %>%
group_by(lambda_scale, from, to) %>%
nest() %>%
mutate(r = map(data, cor_fun)) %>%
unnest(r, .drop = T) %>%
mutate(measure = "Rank-Order", Type = "Lagged")
load(url(sprintf("%s/raw/master/results/fa_results.RData?raw=true", res_path)))
eigen_long <- fa_fit %>%
filter(!is.na(eigen)) %>%
unnest(eigen) %>%
rename(Type = fa_type) %>%
mutate(lambda_scale = "FA")
eigen_cors_long <- eigen_long %>%
mutate(Type = mapvalues(Type, c("dfa", "fa"), c("Lagged", "Contemporaneous"))) %>%
group_by(SID, Type, var, lambda_scale) %>%
mutate(n = n()) %>%
filter(n == 2) %>%
group_by(wave, Type, var) %>%
mutate(rank = dense_rank(desc(eigen))) %>%
select(-count, -nfact, -n, -eigen) %>%
spread(wave, rank) %>%
group_by(Type, var, lambda_scale) %>%
summarize(r = cor(`1`, `2`, use = "pairwise"),
measure = "Rank Order") %>%
ungroup() %>%
rename(Var1 = var)
levs <- paste(rep(c("Contemporaneous", "Lagged"), each = 5),
rep(c("mean", "sd", "median", "min", "max"), times = 2), sep = ".")
temp_cors_long %>%
rename(Var1 = from, Var2 = to) %>%
full_join(contemp_cors_long) %>%
full_join(eigen_cors_long) %>%
group_by(Type, lambda_scale) %>%
summarise_at(vars(r), funs(mean, sd, min, max, median), na.rm = T) %>%
gather(key = est, value = value, mean:median) %>%
unite(tmp, Type, est, sep = ".") %>%
mutate(tmp = factor(tmp, levels = levs)) %>%
spread(tmp, value) %>%
kable(., booktabs = T, digits = 2, format = "html",
col.names = c("sfs", rep(c("M", "SD", "Med", "Min", "Max"),2)),
caption = "Descriptives of Contemporaneous Edge Weight Rank-Order Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = F) %>%
add_header_above(c(" " = 1, "Contemporaneous" = 5, "Lagged" = 5))
sfs | M | SD | Med | Min | Max | M | SD | Med | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|
.25 | 0.09 | 0.10 | 0.06 | -0.10 | 0.33 | 0.01 | 0.10 | 0.01 | -0.23 | 0.31 |
.5 | 0.09 | 0.12 | 0.06 | -0.14 | 0.37 | -0.01 | 0.10 | -0.01 | -0.21 | 0.25 |
association | 0.17 | 0.11 | 0.14 | -0.06 | 0.44 | -0.01 | 0.09 | -0.01 | -0.20 | 0.21 |
FA | NaN | NaN | NA | Inf | -Inf | 0.16 | 0.52 | 0.06 | -0.74 | 0.73 |
gimme | 0.04 | 0.12 | 0.04 | -0.20 | 0.33 | -0.02 | 0.10 | 0.00 | -0.36 | 0.23 |
mlVAR_EB | 0.12 | 0.12 | 0.11 | -0.11 | 0.44 | 0.03 | 0.09 | 0.03 | -0.21 | 0.25 |
scaled | 0.09 | 0.13 | 0.10 | -0.21 | 0.40 | 0.01 | 0.10 | 0.00 | -0.25 | 0.31 |
unregularized | 0.03 | 0.11 | 0.05 | -0.14 | 0.32 | 0.01 | 0.11 | 0.00 | -0.22 | 0.25 |
And create heat maps showing the individual lagged and contemporaneous rank-order correlations (Figure 7)
# make heat maps of both contemporaneous and lagged rank order cors
## figure 6 in manuscript ##
contemp_cors_long %>%
full_join(temp_cors_long %>%
rename(Var1 = from, Var2 = to)) %>%
mutate(Var1 = factor(Var1, levels = sort(unique(Var1))),
Var2 = factor(Var2, levels = rev(sort(unique(Var2))))) %>%
filter(lambda_scale == ".25") %>%
ggplot(aes(x = Var1, y = Var2, fill = r)) +
geom_raster() +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-.5,.5), space = "Lab",
name="Edge Consistency\nCorrelations") +
geom_text(aes(label = round(r,2))) +
facet_grid(.~Type) +
labs(x = "Node 1", y = "Node 2") +
theme_classic() +
theme(strip.text = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1),
legend.title = element_text(face = "bold"),
legend.text = element_text(face = "bold"),
legend.position = "bottom")
# ggsave(file = sprintf("%s/results/plots/Rank_Edge_Cors_heatmap.png", res_path), width = 9, height = 6)
(ip_contemp_cors <- contemp_long %>%
select(SID, lambda_scale, wave, Var1:weight) %>%
group_by(SID, wave, lambda_scale) %>%
mutate(weight.c = as.numeric(scale(weight, scale = F))) %>%
ungroup() %>%
arrange(lambda_scale, wave, SID, Var1, Var2) %>%
select(-weight) %>%
spread(wave, weight.c) %>%
group_by(SID, lambda_scale) %>%
summarize(cors = cor(`1`, `2`, use = "pairwise.complete.obs"),
spear = cor(`1`, `2`, use = "pairwise.complete.obs", method = "spearman")) %>%
filter(!is.na(cors)) %>%
mutate(type = "Contemporaneous"))
(ip_temp_cors <- temp_long %>%
select(SID, lambda_scale, wave, from:weight) %>%
group_by(SID, lambda_scale, wave, lambda_scale) %>%
mutate(weight.c = as.numeric(scale(weight, center = T, scale = F))) %>%
ungroup() %>%
select(-weight) %>%
spread(wave, weight.c) %>%
group_by(SID, lambda_scale) %>%
summarize(cors = cor(`1`, `2`, use = "pairwise.complete.obs"),
spear = cor(`1`, `2`, use = "pairwise.complete.obs", method = "spearman")) %>%
filter(!is.na(cors)) %>%
mutate(type = "Lagged"))
# convert centrality to ranks for each measure and
# calculate rank-order correlations
contemp_centrality_rank <- tbl_df(contemp_centrality) %>%
filter(SID %in% w1w2_subs) %>%
gather(key = measure, value = Centrality, Betweenness:Strength) %>%
group_by(measure, lambda_scale, var, type, wave) %>%
mutate(rank = min_rank(desc(Centrality))) %>%
ungroup() %>%
select(-Centrality, -ExpectedInfluence) %>%
spread(key = wave, value = rank) %>%
group_by(measure, lambda_scale, var) %>%
summarize(r = cor(`1`, `2`, use = "pairwise", method = "spearman"))
contemp_centrality_rank %>%
group_by(measure, lambda_scale) %>%
summarize(m = meanSD_r2z2r(r)[1],
sd = meanSD_r2z2r(r)[2],
min = min(r),
max = max(r),
Type = "Contemporaneous") %>%
kable(., booktabs = T, digits = 2, format = "html",
caption = "Descriptives of Contemporaneous Centrality Rank-Order Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
measure | lambda_scale | m | sd | min | max | Type |
---|---|---|---|---|---|---|
Betweenness | .25 | 0.08 | 0.08 | -0.03 | 0.24 | Contemporaneous |
Betweenness | .5 | 0.12 | 0.11 | 0.00 | 0.29 | Contemporaneous |
Betweenness | association | 0.05 | 0.08 | -0.11 | 0.14 | Contemporaneous |
Betweenness | gimme | 0.05 | 0.06 | -0.06 | 0.13 | Contemporaneous |
Betweenness | mlVAR_EB | 0.06 | 0.06 | -0.02 | 0.15 | Contemporaneous |
Betweenness | scaled | 0.10 | 0.07 | -0.01 | 0.19 | Contemporaneous |
Betweenness | unregularized | -0.01 | 0.12 | -0.20 | 0.18 | Contemporaneous |
Closeness | .25 | 0.11 | 0.12 | 0.01 | 0.38 | Contemporaneous |
Closeness | .5 | -0.02 | 0.12 | -0.16 | 0.25 | Contemporaneous |
Closeness | association | 0.18 | 0.08 | 0.02 | 0.29 | Contemporaneous |
Closeness | gimme | -0.05 | 0.10 | -0.21 | 0.09 | Contemporaneous |
Closeness | mlVAR_EB | 0.09 | 0.05 | -0.01 | 0.16 | Contemporaneous |
Closeness | scaled | 0.09 | 0.11 | -0.06 | 0.28 | Contemporaneous |
Closeness | unregularized | 0.19 | 0.06 | 0.13 | 0.28 | Contemporaneous |
Strength | .25 | 0.20 | 0.08 | 0.11 | 0.33 | Contemporaneous |
Strength | .5 | 0.19 | 0.06 | 0.07 | 0.24 | Contemporaneous |
Strength | association | 0.20 | 0.10 | 0.02 | 0.35 | Contemporaneous |
Strength | gimme | 0.09 | 0.09 | -0.07 | 0.28 | Contemporaneous |
Strength | mlVAR_EB | 0.21 | 0.10 | 0.05 | 0.40 | Contemporaneous |
Strength | scaled | 0.26 | 0.05 | 0.18 | 0.35 | Contemporaneous |
Strength | unregularized | 0.16 | 0.07 | 0.05 | 0.25 | Contemporaneous |
# convert centrality to ranks for each measure and
# calculate rank-order correlations
temp_centrality_rank <- tbl_df(temp_centrality) %>%
filter(SID %in% w1w2_subs) %>%
gather(key = measure, value = Centrality, Betweenness:OutStrength) %>%
group_by(measure, lambda_scale, var, type, wave) %>%
mutate(rank = min_rank(desc(Centrality))) %>%
ungroup() %>%
gather(key = measure2, value = value, Centrality, rank) %>%
unite(measure3, measure, measure2, remove = F, sep = ".") %>%
select(-contains("Influence")) %>%
spread(key = wave, value = value) %>%
filter(measure2 == "rank" & grepl("trength", measure)) %>%
group_by(var, lambda_scale, type, measure) %>%
summarize(r = cor(`1`, `2`, use = "pairwise"))
temp_centrality_rank %>%
group_by(measure, lambda_scale) %>%
summarize(mean = meanSD_r2z2r(r)[1],
sd = meanSD_r2z2r(r)[2],
min = min(r, na.rm = T),
max = max(r, na.rm = T),
Type = "Lagged") %>%
kable(., booktabs = T, digits = 2, format = "html",
caption = "Descriptives of Lagged Centrality Rank-Order Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
measure | lambda_scale | mean | sd | min | max | Type |
---|---|---|---|---|---|---|
InStrength | .25 | 0.20 | 0.06 | 0.12 | 0.25 | Lagged |
InStrength | .5 | 0.14 | 0.04 | 0.09 | 0.20 | Lagged |
InStrength | association | 0.13 | 0.07 | -0.01 | 0.20 | Lagged |
InStrength | gimme | 0.08 | 0.07 | -0.02 | 0.17 | Lagged |
InStrength | mlVAR_EB | 0.04 | 0.10 | -0.16 | 0.22 | Lagged |
InStrength | scaled | 0.20 | 0.06 | 0.11 | 0.30 | Lagged |
InStrength | unregularized | -0.02 | 0.07 | -0.14 | 0.09 | Lagged |
OutStrength | .25 | 0.21 | 0.07 | 0.14 | 0.32 | Lagged |
OutStrength | .5 | 0.15 | 0.06 | 0.08 | 0.24 | Lagged |
OutStrength | association | 0.13 | 0.07 | -0.03 | 0.21 | Lagged |
OutStrength | gimme | 0.07 | 0.09 | -0.06 | 0.19 | Lagged |
OutStrength | mlVAR_EB | 0.15 | 0.09 | 0.01 | 0.27 | Lagged |
OutStrength | scaled | 0.21 | 0.07 | 0.09 | 0.31 | Lagged |
OutStrength | unregularized | -0.09 | 0.06 | -0.19 | 0.01 | Lagged |
# ipsative consistency (profile correlations for each person)
(ip_contemp_cent_cors <- contemp_centrality %>%
filter(SID %in% w1w2_subs) %>%
# select(-ExpectedInfluence) %>%
gather(key = measure, value = Centrality, Betweenness:Strength) %>%
spread(key = wave, value = Centrality) %>%
arrange(SID, type, measure, var) %>%
filter(complete.cases(.)) %>%
group_by(SID, lambda_scale, type, measure) %>%
nest() %>%
mutate(r = map(data, ~cor(.$`1`, .$`2`, use = "pairwise"))) %>%
unnest(r, .drop = T))
# ipsative consistency (profile correlations for each person)
(ip_temp_cent_cors <- tbl_df(temp_centrality) %>%
select(-contains("ExpectedInfluence")) %>%
filter(SID %in% w1w2_subs) %>%
gather(key = measure, value = Centrality, Betweenness:OutStrength) %>%
spread(key = wave, value = Centrality) %>%
arrange(lambda_scale, SID, type, measure, var) %>%
group_by(SID, lambda_scale, type, measure) %>%
nest() %>%
mutate(r = map(data, ~cor(.$`1`, .$`2`, use = "pairwise"))) %>%
unnest(r, .drop = T))
Do people who have more observations show more consistency across waves?
The answer to this appears to be yes, but it appears to be true regardless of the choice of how to model the data and mostly true for contemporaneous associations rather than lagged associations, with the exception of lagged (zero-order) association networks.
ip_temp_cors %>% full_join(ip_contemp_cors) %>%
full_join(w1 %>% full_join(w2) %>% select(SID, count, wave) %>% distinct()) %>%
filter(!is.na(type)) %>%
group_by(wave, lambda_scale, type) %>%
summarize(r = cor(cors, count, use = "pairwise")) %>%
spread(key = type, value = r) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
caption = "Sample Size Correlations") %>%
kable_styling(full_width = F)
wave | lambda_scale | Contemporaneous | Lagged |
---|---|---|---|
1 | .25 | 0.46 | 0.20 |
1 | .5 | 0.41 | 0.06 |
1 | association | 0.34 | 0.29 |
1 | gimme | 0.48 | 0.41 |
1 | mlVAR_EB | -0.11 | 0.10 |
1 | scaled | 0.42 | 0.10 |
1 | unregularized | 0.49 | 0.24 |
2 | .25 | 0.54 | 0.14 |
2 | .5 | 0.52 | 0.08 |
2 | association | 0.41 | 0.42 |
2 | gimme | 0.53 | 0.43 |
2 | mlVAR_EB | -0.11 | 0.11 |
2 | scaled | 0.41 | 0.21 |
2 | unregularized | 0.49 | 0.12 |
Do people who had more observations in one wave than the other show more (or less) consistency than those who had roughly equal numbers?
There appear to be small correlations between imbalance and consistency for contemporaneous, but not lagged, associations, such that the larger the difference between waves, the higher the consistency estimates, which is not the direction I would have predicted if there were to be issues in the estimation.
ip_temp_cors %>% full_join(ip_contemp_cors) %>%
full_join(w1 %>% full_join(w2) %>% select(SID, count, wave) %>% distinct()) %>%
filter(!is.na(type)) %>%
group_by(SID, lambda_scale, cors, type) %>%
summarise(abs_diff = abs(count[wave == 1] - count[wave == 2])) %>%
group_by(lambda_scale, type) %>%
summarize(r = cor(cors, abs_diff, use = "pairwise")) %>%
spread(key = type, value = r) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
caption = "Imbalance Correlations") %>%
kable_styling(full_width = F)
lambda_scale | Contemporaneous | Lagged |
---|---|---|
.25 | 0.19 | 0.07 |
.5 | 0.17 | 0.04 |
association | 0.21 | 0.19 |
gimme | 0.32 | 0.23 |
mlVAR_EB | -0.06 | 0.04 |
scaled | 0.06 | 0.07 |
unregularized | 0.35 | 0.09 |
To test the reliability of the networks, we split each person’s responses in half and calculate a network of eah and then compare the two using profile correlations.
##Split Half Networks (Reliability Check)
# To test the reliability of the networks, we split each person's responses in half and
# calculate a network of eah and then compare the two using profile correlations.
gVAR_split_fun <- function(sid, wave, spl_type, spl_num, row_num){
df <- switch(as.numeric(wave), w1, w2) %>%
filter(SID == sid)
if(spl_type == "half"){
# first havlf v. second half
df <- df %>%
mutate(split = ifelse(count %% 2 == 0, count/2, count%/%2),
split = ifelse(beep_seq <= split, 1, 2)) %>%
filter(split == spl_num)
} else {
# odds v. evens
df <- df %>%
mutate(split = ifelse(beep_seq %in% seq(1,unique(count),2), 1, 2)) %>%
filter(split == spl_num)
}
df <- df %>%
group_by(SID, count, wave) %>%
nest() %>%
mutate(data2 = map(data, jitter_fun)) %>%
unnest(data2, .drop = T)
print(row_num)
gVAR_fun(df, sid, wave)
}
gVAR_fit_split <- unique(expand.grid(stringsAsFactors = F,
SID = unique(w1$SID), wave = "1",
split_type = c("half", "every-other"), split_num = c(1,2)
) %>%
full_join(expand.grid(stringsAsFactors = F,
SID = unique(w2$SID), wave = "2",
split_type = c("half", "every-other"), split_num = c(1,2)
)) %>%
full_join(unique(unique(w1 %>% select(SID, count, wave)) %>%
full_join(unique(w2 %>% select(SID, count, wave))))) %>%
filter(count >= 20) %>%
tbl_df() %>%
arrange(wave, SID)) %>%
filter(!(wave == "1" & SID %in% c("88595", "7287", "30871", "42807", "53655",
"70848", "6009", "29473", "75689", "28212", "25083", "34967"))) %>%
filter(!(wave == "2" & SID %in% c("13674", "47525", "20054", "57290"))) %>%
mutate(row = row_number(),
gVAR_fit = pmap(list(SID, wave, split_type, split_num, row),
possibly(gVAR_split_fun, NA_real_)))
save(gVAR_fit_split, file = sprintf("%s/results/split_half_gVAR_fit.RData", res_path))
# run the same extraction procedure as above for split-half networks
##split half networks
load(url(sprintf("%s/raw/master/results/split_half_gVAR_fit.RData?raw=true", res_path)))
gVAR_fit_split <- gVAR_fit_split %>%
filter(!is.na(gVAR_fit)) %>%
group_by(SID, wave, split_type) %>%
mutate(n = n()) %>%
# we can only assess individuals for whom we could estimate a network for each
# half of their data within a wave
filter(n == 2) %>%
mutate(beta = map2(gVAR_fit, SID, possibly(temp_fun, NA_real_)),
kappa_mat = map(gVAR_fit, possibly(contemp_mat_fun, NA_real_)),
kappa = map(gVAR_fit, possibly(contemp_long_fun, NA_real_)))
split_beta_long <- gVAR_fit_split %>% filter(!is.na(beta)) %>% unnest(beta)
split_kappa_long <- gVAR_fit_split %>% filter(!is.na(kappa)) %>% unnest(kappa)
# extract PCC information
split_PCC_fit <- gVAR_fit_split$kappa_mat; names(split_PCC_fit) <- gVAR_fit_split$SID
# pull cross-wave lagged and contemporaneous effects
# and calculate correlations across waves
ip_split_cors <- split_beta_long %>%
ungroup() %>%
mutate(type = "Lagged") %>%
full_join(split_kappa_long %>% ungroup() %>% select(-var) %>%
mutate(type = "Contemporaneous") %>%
rename(from = Var1, to = Var2)) %>%
group_by(SID, type, wave, split_type, split_num) %>%
mutate(value.c = as.numeric(scale(weight, center = T, scale = F))) %>%
ungroup() %>%
arrange(wave, type, split_type, split_num, SID, from, to) %>%
select(-weight, -n, -count, -row) %>%
# unite(split, wave, split_num) %>%
spread(split_num, value.c) %>%
group_by(SID, wave, type, split_type) %>%
summarize(r = cor(`1`, `2`, use = "pairwise.complete.obs"))
# descriptives
ip_split_cors %>%
group_by(wave, type, split_type) %>%
summarise(M = mean(r, na.rm = T),
sd = sd(r, na.rm = T),
min = min(r, na.rm = T),
max = max(r, na.rm = T)) %>%
kable(., booktabs = T, digits = 2, format = "html",
caption = "Descriptives of Network Reliability") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
wave | type | split_type | M | sd | min | max |
---|---|---|---|---|---|---|
1 | Contemporaneous | every-other | 0.43 | 0.29 | -0.19 | 0.99 |
1 | Contemporaneous | half | 0.40 | 0.28 | -0.32 | 0.92 |
1 | Lagged | every-other | 0.01 | 0.15 | -0.45 | 0.55 |
1 | Lagged | half | 0.01 | 0.14 | -0.61 | 0.53 |
2 | Contemporaneous | every-other | 0.50 | 0.31 | -0.19 | 0.98 |
2 | Contemporaneous | half | 0.49 | 0.34 | -0.34 | 0.96 |
2 | Lagged | every-other | 0.00 | 0.17 | -0.47 | 0.60 |
2 | Lagged | half | 0.03 | 0.16 | -0.59 | 0.58 |
plot_fun <- function(df, type){
plot <- df %>%
mutate(split_type = dplyr::recode(split_type, `every-other` = "Odd-Even",
`half` = "Split-Half")) %>%
ggplot(aes(x = r, y = ..density.., fill = split_type)) +
geom_histogram(color = "black", fill = "gray") +
geom_density(alpha = .2) +
scale_x_continuous(limits = c(-1,1), breaks = seq(-1,1,.5)) +
labs(x = sprintf("%s Ipsative Correlations", type), y = "Density") +
facet_grid(wave~split_type) +
theme_classic() +
theme(axis.text = element_text(face = "bold", size = rel(1.2)),
axis.title = element_text(face = "bold", size = rel(1.2)),
strip.text = element_text(face = "bold", size = rel(1.2)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5),
legend.position = "none")
# ggsave(sprintf("%s/results/plots/%s_split_reliability.png", res_path, type),
# width = 6, height = 4)
print(plot)
return(plot)
}
# plot histograms of ipsative lagged and contemporaneous consistency
ip_split_plot <- ip_split_cors %>%
ungroup() %>%
mutate(wave = sprintf("Wave %s", wave)) %>%
group_by(type) %>%
nest() %>%
mutate(plot = map2(data, type, plot_fun))
load(url(sprintf("%s/blob/master/results/PAIRS_networks_pers_FINAL.RData?raw=true", res_path)))
profile_cor_fun <- function(id_list, wave, type){
if(type == "Lagged"){
id_list <- id_list %>% select(from, to, type, weight) %>% arrange(from, to)
if(wave == "1"){pop_list <- lagged_effects_w1} else{pop_list <- lagged_effects_w2}
pop_list <- pop_list %>% select(from, to, fixed) %>% arrange(from, to)
id_list %>% full_join(pop_list) %>% summarize(r = cor(fixed, weight, use = "pairwise"))}
else{
id_list <- id_list %>% select(Var1, Var2, weight, type) %>% arrange(Var1, Var2)
if(wave == "1"){pop_list <- contemp_eff_w1} else{pop_list <- contemp_eff_w2}
pop_list <- pop_list %>% select(Var1, Var2, weight, type) %>% arrange(Var1, Var1) %>% rename(pcor = weight)
id_list %>% full_join(pop_list) %>% group_by(type) %>% summarize(r = cor(pcor, weight, use = "pairwise"))}}
gVAR_fit <- gVAR_fit %>%
mutate(temp_procor = map2(temp, wave, ~profile_cor_fun(.x, .y, "Lagged")),
contemp_procor = map2(contemp, wave, ~profile_cor_fun(.x, .y, "Contemporaneous")))
(refCong_procors <- gVAR_fit %>% unnest(temp_procor, .drop = T) %>%
mutate(type = "Lagged") %>%
full_join(unnest(gVAR_fit, contemp_procor, .drop = T) %>%
mutate(type = "Contemporaneous")))
To look at individual differences in Network consistency, we user a Fisher r to z transformation to compute the average and standard deviation. We also plot a histogram of individual ipsative profiles to show the full distribution of consistency.
### Plot
load(url(sprintf("%s/blob/master/results/fa_results.RData?raw=true", res_path)))
ip_cors <- ip_temp_cors %>% full_join(ip_contemp_cors) %>%
full_join(fa_cong %>% select(SID, fa_type, ip_eigen) %>%
mutate(fa_type = mapvalues(fa_type, c("dfa", "fa"),
c("Lagged", "Contemporaneous"))) %>%
rename(type = fa_type, cors = ip_eigen) %>%
mutate(lambda_scale = "FA"))
ip_cors %>% filter(lambda_scale == ".25") %>%
ggplot(aes(x = cors, y = ..density.., fill = type)) +
scale_fill_manual(values = c("blue", "springgreen4")) +
geom_histogram(color = "black", fill = "gray") +
geom_density(bw = .1, alpha = .3)+
scale_x_continuous(limits = c(-1.1,1.1), breaks = seq(-1,1,1)) +
labs(x = "Ipsative Correlations", y = "Density",
title = "Ipsative Network Consistency") +
facet_grid(~type) +
theme_classic() +
theme(axis.text = element_text(face = "bold", size = rel(1.2)),
axis.title = element_text(face = "bold", size = rel(1.2)),
strip.text = element_text(face = "bold", size = rel(1.2)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5),
legend.position = "none")
# ggsave(sprintf("%s/results/plots/ipsative_cor.png", res_path),
# width = 6, height = 3)
new_names <- tribble(
~lambda_scale, ~new,
".25", "lambda==.025-.25~(Main)",
".5", "lambda==.025-.5~(Stricter)",
"scaled", "lambda==.01%.%N~(Scaled)",
"unregularized", "lambda==~0~(Unregularized)",
"association", "Bivariate~Associations",
"gimme", "GIMME",
"mlVAR_EB", "Empirical~Bayes~Estimates",
"FA", "P-Factor~Analysis"
)
new <- new_names$new
p1 <-
ip_cors %>% filter(type == "Lagged") %>%
mutate(lambda_scale = factor(lambda_scale, labels = new,
levels = new_names$lambda_scale)) %>%
ggplot(aes(x = cors, y = ..density.., fill = type)) +
scale_fill_manual(values = c( "springgreen4")) +
geom_histogram(color = "black", fill = "gray") +
geom_density(bw = .1, alpha = .3)+
geom_vline(aes(xintercept = 0), linetype = "dashed") +
scale_x_continuous(limits = c(-1.1,1.1), breaks = seq(-1,1,1)) +
labs(x = "", y = NULL,
title = "Lagged") +
facet_wrap(~lambda_scale, nrow = 4, labeller = label_parsed) +
theme_classic() +
theme(axis.text = element_text(face = "bold", size = rel(1.2)),
axis.text.y = element_blank(),
axis.title = element_text(face = "bold", size = rel(1.2)),
axis.title.x = element_text(hjust = 0),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
strip.text = element_text(face = "bold", size = rel(.8)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5),
legend.position = "none",
strip.background = element_blank(),
panel.border = element_rect(fill = NA, color = "black", size = 1))
p2 <-
ip_cors %>% filter(type != "Lagged") %>%
mutate(lambda_scale = factor(lambda_scale, labels = new,
levels = new_names$lambda_scale)) %>%
ggplot(aes(x = cors, y = ..density.., fill = type)) +
scale_fill_manual(values = c("blue", "springgreen4")) +
geom_histogram(color = "black", fill = "gray") +
geom_density(bw = .1, alpha = .3)+
geom_vline(aes(xintercept = 0), linetype = "dashed") +
scale_x_continuous(limits = c(-1.1,1.1), breaks = seq(-1,1,1)) +
labs(x = "", y = "Density",
title = "Contemporaneous") +
facet_wrap(~lambda_scale, nrow = 4, labeller = label_parsed) +
theme_classic() +
theme(axis.text = element_text(face = "bold", size = rel(1.2)),
axis.title = element_text(face = "bold", size = rel(1.2)),
axis.title.x = element_text(hjust = 1),
axis.ticks.y = element_blank(),
axis.line.y = element_blank(),
strip.text = element_text(face = "bold", size = rel(.8)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5),
legend.position = "none",
strip.background = element_blank(),
panel.border = element_rect(fill = NA, color = "black", size = 1))
library(cowplot)
p <- cowplot::plot_grid(p2, p1, nrow = 1, rel_widths = c(53/100, 47/100))
p <- cowplot::ggdraw(add_sub(p, "Ipsative Consistency (Correlations)", vpadding=grid::unit(0,"lines"),y=6, hjust = .4, vjust=4.5, fontface = "bold"))
# ggsave(p, file = sprintf("%s/results/plots/ipsative_cor_all.png", data_path), width = 8, height = 8)
ip_cors %>%
group_by(type, lambda_scale) %>%
summarize(mean_cor = meanSD_r2z2r(cors)[1],
sd_cor = meanSD_r2z2r(cors)[2],
range = diff(range(cors, na.rm = T)),
median = median(cors, na.rm = T)) %>%
kable(., "html", escape = F, booktabs = T, digits = 2,
col.names = c("Type", "Network Type", "Mean", "SD", "Range", "Median")) %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
Type | Network Type | Mean | SD | Range | Median |
---|---|---|---|---|---|
Contemporaneous | .25 | 0.64 | 0.41 | 1.12 | 0.65 |
Contemporaneous | .5 | 0.66 | 0.44 | 1.07 | 0.68 |
Contemporaneous | association | 0.61 | 0.28 | 0.85 | 0.61 |
Contemporaneous | FA | 0.97 | 0.37 | 0.15 | 0.97 |
Contemporaneous | gimme | 0.41 | 0.31 | 1.20 | 0.43 |
Contemporaneous | mlVAR_EB | 0.92 | 0.25 | 0.21 | 0.92 |
Contemporaneous | scaled | 0.74 | 0.61 | 1.04 | 0.72 |
Contemporaneous | unregularized | 0.38 | 0.25 | 0.89 | 0.35 |
Lagged | .25 | 0.03 | 0.16 | 0.89 | 0.01 |
Lagged | .5 | 0.01 | 0.16 | 1.05 | 0.00 |
Lagged | association | 0.07 | 0.20 | 1.22 | 0.04 |
Lagged | FA | 0.98 | 0.52 | 0.20 | 0.97 |
Lagged | gimme | 0.07 | 0.20 | 0.85 | 0.04 |
Lagged | mlVAR_EB | 0.43 | 0.19 | 0.71 | 0.44 |
Lagged | scaled | 0.03 | 0.17 | 1.03 | 0.01 |
Lagged | unregularized | 0.03 | 0.14 | 0.67 | 0.04 |
As with ipsative edge weight consistency, we can look at the average consistency of profiles of centrality measures as well as the distribution of ipsative consistency across the population.
ip_cent_cors <- ip_temp_cent_cors %>%
full_join(ip_contemp_cent_cors)
ip_temp_cent_cors %>%
full_join(ip_contemp_cent_cors ) %>%
filter(grepl("trength", measure) & lambda_scale == ".25") %>%
ggplot(aes(x = r, y = ..density.., fill = measure)) +
geom_histogram(binwidth = .1, color = "black", fill = "gray")+
geom_density(bw = .1, alpha = .3)+
labs(y = "Density", x = "Profile Correlation") +
facet_wrap(~type + measure, nrow = 1) +
theme_classic() +
theme(plot.title = element_text(hjust = .5),
legend.position = "none",
axis.text = element_text(face = "bold", size = rel(1.2)),
axis.title = element_text(face = "bold", size = rel(1.2)),
strip.text = element_text(face = "bold", size = rel(1.2)))
# ggsave(sprintf("%s/results/plots/centrality_ipsative_cor.png", res_path),
# width = 6, height = 3)
ip_temp_cent_cors %>%
full_join(ip_contemp_cent_cors) %>%
group_by(type, lambda_scale, measure) %>%
summarize(mean = meanSD_r2z2r(r)[1],
sd = meanSD_r2z2r(r)[2],
min = min(r,na.rm = T),
max = max(r,na.rm = T),
range = diff(range(r, na.rm = T))) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
caption = "Descriptives of Ipsative Centrality Correlations") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
type | lambda_scale | measure | mean | sd | min | max | range |
---|---|---|---|---|---|---|---|
Contemporaneous | .25 | Betweenness | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | .25 | Strength | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | .5 | Betweenness | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | .5 | Strength | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | gimme | Betweenness | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | gimme | Strength | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | scaled | Betweenness | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | scaled | Closeness | NaN | NA | Inf | -Inf | -Inf |
Contemporaneous | scaled | Strength | NaN | NA | Inf | -Inf | -Inf |
Lagged | .25 | Betweenness | 0.06 | 0.40 | -0.49 | 0.93 | 1.42 |
Lagged | .25 | Closeness | -0.10 | 0.52 | -1.00 | 1.00 | 2.00 |
Lagged | .25 | InStrength | 0.32 | 0.46 | -0.47 | 0.95 | 1.42 |
Lagged | .25 | OutStrength | 0.22 | 0.40 | -0.71 | 0.84 | 1.55 |
Lagged | .5 | Betweenness | -0.06 | 0.40 | -0.44 | 0.86 | 1.30 |
Lagged | .5 | Closeness | -0.03 | 0.50 | -0.67 | 1.00 | 1.67 |
Lagged | .5 | InStrength | 0.40 | 0.66 | -0.39 | 1.00 | 1.39 |
Lagged | .5 | OutStrength | 0.13 | 0.37 | -0.75 | 0.70 | 1.46 |
Lagged | association | Betweenness | 0.04 | 0.39 | -0.75 | 0.70 | 1.45 |
Lagged | association | Closeness | 0.04 | 0.36 | -0.75 | 0.75 | 1.50 |
Lagged | association | InStrength | 0.00 | 0.39 | -0.92 | 0.77 | 1.69 |
Lagged | association | OutStrength | 0.03 | 0.37 | -0.88 | 0.88 | 1.76 |
Lagged | gimme | Betweenness | 0.02 | 0.49 | -0.58 | 0.99 | 1.57 |
Lagged | gimme | Closeness | 0.56 | 0.66 | -1.00 | 1.00 | 2.00 |
Lagged | gimme | InStrength | -0.01 | 0.40 | -0.59 | 0.84 | 1.43 |
Lagged | gimme | OutStrength | 0.03 | 0.42 | -0.69 | 1.00 | 1.69 |
Lagged | mlVAR_EB | Betweenness | 0.58 | 0.46 | -0.74 | 0.96 | 1.70 |
Lagged | mlVAR_EB | Closeness | 0.46 | 0.32 | -0.17 | 0.87 | 1.04 |
Lagged | mlVAR_EB | InStrength | 0.65 | 0.38 | -0.12 | 0.97 | 1.09 |
Lagged | mlVAR_EB | OutStrength | 0.52 | 0.36 | -0.31 | 0.91 | 1.23 |
Lagged | scaled | Betweenness | 0.06 | 0.43 | -0.52 | 0.86 | 1.38 |
Lagged | scaled | Closeness | 0.02 | 0.50 | -1.00 | 0.66 | 1.66 |
Lagged | scaled | InStrength | 0.34 | 0.52 | -0.33 | 0.98 | 1.31 |
Lagged | scaled | OutStrength | 0.21 | 0.33 | -0.52 | 0.80 | 1.31 |
Lagged | unregularized | Betweenness | 0.06 | 0.43 | -0.71 | 0.86 | 1.57 |
Lagged | unregularized | Closeness | 0.00 | 0.38 | -0.78 | 0.81 | 1.59 |
Lagged | unregularized | InStrength | 0.01 | 0.44 | -0.95 | 0.96 | 1.91 |
Lagged | unregularized | OutStrength | -0.04 | 0.40 | -0.82 | 0.86 | 1.67 |
Bringmann et al. (2013) developed a technique for assessing ESM data using a network approach. This approach utilizes a series of univariate multilvel vector autoregressive models (mlVAR) in which all items are entered simultaneously as predictors and individually as outcomes. Below we run the models for the nine personality items at each wave. The mlVAR()
function automatically within-centers data, so we will enter the raw data into the models. Because of the number of observations we have for each usbject we use a lag 1 factorization. Because we have more than 6 predictors, we use orthogonal estimation of lagged and contemporaneous effects.
# raw data #
# not affected by using only complete cases of the data #
fit1_w1 <-
mlVAR(w1,
vars = colnames(w1)[6:14], #4:18
idvar = "SID",
lags = 1,
#dayvar = "day",
beepvar = "beep_seq",
temporal = "orthogonal",
contemporaneous = "orthogonal",
verbose = TRUE,
scale = FALSE)
# raw data #
fit1_w2 <-
mlVAR(w2,
vars = colnames(w2)[5:13], #4:16
idvar = "SID",
lags = 1,
#dayvar = "day",
beepvar = "beep_seq",
#covar = "Age",
temporal = "orthogonal",
contemporaneous = "orthogonal",
verbose = TRUE,
scale = FALSE)
#model summary
sum_fit1_w1 <- summary(fit1_w1)
sum_fit1_w2 <- summary(fit1_w2)
The figure below presents the results of the four mlVAR models (1 lagged and 1 contemporaneous network for each wave). For the purposes of interpretation and comparison, the structure of the networks for the second wave have been constrained to match the first wave and only significant edges are displayed.
# The graphs below show the raw, directed network the estimated, directed network
# using a univariate multilevel vector autoregressive models as (1) lagged and
# (2) contemporaneous netowrks. Note that the code for the plot may appear complicated
# at first glance but just largely deals with aesthetics of the graphs.
b5_groups <- list(A = c(1,7), E = c(2, 6), C = c(3,8), N = c(4,5,9))
plot_fun <- function(mlVAR.obj, type, wave, sd = FALSE, Layout = "spring",
noplot = TRUE, Nosig = 'hide'){
plot <- plot(mlVAR.obj, type, layout = Layout, #labels = varnames2,
groups = b5_groups, nonsig = Nosig, curve = -1, legend = FALSE,
details = FALSE, mar = c(5,5,5,5), border.color = "black",
border.width = 2, title = sprintf("%s\nWave%s", str_to_title(type), wave),
loop = .7, node.width = 1.6, edge.width = 1, asize = 5, label.font = 2,
label.fill.vertical = 1, label.fill.horizontal = 1, edge.color = "blue",
color = t(brewer.pal(9, "Purples")[seq(1,7,2)]), DoNotPlot = noplot, SD = sd)
# change negative edges to dashed
plot$graphAttributes$Edges$lty[plot$Edgelist$weight < 0] <- 2
# change edge colors based on weights
if(sd == FALSE){
if(type == "temporal"){
plot$graphAttributes$Edges$color <-
ifelse(plot$Edgelist$weight <.02, "thistle2",
ifelse(plot$Edgelist$weight <.04, "mediumorchid", "midnightblue"))
} else {
plot$graphAttributes$Edges$color <-
ifelse(abs(plot$Edgelist$weight) < .1, "thistle2",
ifelse(abs(plot$Edgelist$weight) < .3, "mediumorchid", "midnightblue"))}
}
#change variable names
plot$graphAttributes$Nodes$labels <- str_replace(plot$graphAttributes$Nodes$labels, "_", "\n")
# change labels of dark colored nodes to white
dark_colors <- c("#9E9AC8", "#807DBA", "#6A51A3", "#54278F", "#3F007D")
plot$graphAttributes$Nodes$label.color[plot$graphAttributes$Nodes$color %in% dark_colors] <- "white"
return(plot)
}
# run but don't generate plots
plot_w1 <- plot_fun(fit1_w1, "temporal", "1")
plot_w1_contemp <- plot_fun(fit1_w1, "contemporaneous", "1")
plot_w2 <- plot_fun(fit1_w2, "temporal", "2", sd = FALSE, Layout = plot_w1$layout)
plot_w2_contemp <- plot_fun(fit1_w2, "contemporaneous", "2", Layout = plot_w1_contemp$layout)
# generate modified plots
par(mfrow = c(2,2))
plot(plot_w1)
plot(plot_w1_contemp)
plot(plot_w2)
plot(plot_w2_contemp)
# generate sd plots
par(mfrow = c(2,2))
plot(plot_fun(fit1_w1, "temporal", "1", sd = TRUE, Layout = plot_w1$layout, noplot = TRUE))
plot(plot_fun(fit1_w1, "contemporaneous", "1", sd = TRUE, Layout = plot_w1_contemp$layout, noplot = TRUE, Nosig = 'show'))
plot(plot_fun(fit1_w2, "temporal", "2", sd = TRUE, Layout = plot_w1$layout, noplot = TRUE))
plot(plot_fun(fit1_w2, "contemporaneous", "2", sd = TRUE, Layout = plot_w1_contemp$layout, noplot = TRUE, Nosig = 'show'))
In addition, we assessed the local network structure using centrality. Specifically, we calculated the strength centrality for lagged and contemporaneous networks at each wave separately. Because the lagged network is directed, we calculated both in strength and out strength for each node. We can use both centrality indices and edges to examine local properties of different nodes across both waves. In the population networks, central nodes represent consensus - behavioral patterns that were shared across people - while peripheral nodes represent idiosyncrasies - behavioral patterns that differed across people. For comparison across waves, we z-transformed all results for display in the figure below.
Centrality refers to the relative importance of a focal node to the structure and dynamics of a network. In other words, it provides information about a node’s role in the context of other nodes.
# save the lagged results to data frames
lagged_effects_w1 <- tbl_df(sum_fit1_w1$temporal) %>% mutate(wave = "1")
lagged_effects_w2 <- tbl_df(sum_fit1_w2$temporal) %>% mutate(wave = "2")
vars <- names(fit1_w1$output)
# save the contemporaneous results to matrices
contemp_effects_w1 <- fit1_w1$results$Theta$pcor$mean
contemp_effects_w2 <- fit1_w2$results$Theta$pcor$mean
colnames(contemp_effects_w1) <- vars; rownames(contemp_effects_w1) <- vars
colnames(contemp_effects_w2) <- vars; rownames(contemp_effects_w2) <- vars
# function to turn contemporaneous matrices to long format
contemp_long_fun <- function(fit, Wave){
fit <- fit[,order(colnames(fit))]
fit <- fit[order(rownames(fit)),]
fit[lower.tri(fit, diag = T)] <- NA
fit.long <- tbl_df(fit) %>%
mutate(Var1 = colnames(.),
type = "Contemporaneous", wave = Wave) %>%
gather(key = Var2, value = weight, A_kind:N_worried) %>%
filter(!is.na(weight)) %>%
unite(var, Var1, Var2, sep = ".", remove = F)
}
# create long format contemporaneous results
contemp_eff_w1 <- contemp_long_fun(contemp_effects_w1, "1")
contemp_eff_w2 <- contemp_long_fun(contemp_effects_w2, "2")
### Run Centrality Analyses ###
#lagged
#raw
lagged_centrality_w1 <- centrality_auto(sum_fit1_w1$temporal[,c(1,2,4)])
lagged_centrality_w2 <- centrality_auto(sum_fit1_w2$temporal[,c(1,2,4)])
#contemporaneous
#raw
contemporaneous_centrality_w1 <- centrality_auto(contemp_effects_w1)
contemporaneous_centrality_w2 <- centrality_auto(contemp_effects_w2)
# save centrality results into data frame #
# lagged #
temp_cent <- lagged_centrality_w1$node.centrality %>% data.frame() %>%
mutate(wave = "1", type = "Lagged", var = rownames(.)) %>%
full_join(lagged_centrality_w2$node.centrality %>% data.frame() %>%
mutate(wave = "2", type = "Lagged", var = rownames(.)))
# contemporaneous #
contemp_cent <- contemporaneous_centrality_w1$node.centrality %>%
mutate(wave = "1", type = "Contemporaneous", var = rownames(.)) %>%
full_join((contemporaneous_centrality_w2$node.centrality %>%
mutate(wave = "2", type = "Contemporaneous", var = rownames(.))))
# Lagged #
# wrangle to long format and calculate standardized indices #
temp_cent_long <- temp_cent %>%
gather(key = Measure, value = Centrality, Betweenness:OutStrength) %>%
group_by(wave, Measure) %>%
mutate(z = as.numeric(scale(Centrality)))
# Contemporaneous #
# wrangle to long format and calculate standardized indices #
contemp_cent_long <- contemp_cent %>%
gather(key = Measure, value = Centrality, Betweenness:Strength) %>%
group_by(wave, Measure) %>%
mutate(z = as.numeric(scale(Centrality)))
# create combined data frame of lagged and contemporaneous effects #
combined_centrality <- temp_cent_long %>% full_join(contemp_cent_long) %>% ungroup()
combined_centrality %>%
filter(grepl("trength", Measure)) %>%
mutate(type = factor(type, levels = rev(sort(unique(type))))) %>%
ggplot(aes(x = var, y = z, group = wave))+
geom_line(aes(linetype = wave), color = "black", size = .3) +
geom_point(aes(shape = wave), size = 2) +
scale_y_continuous(limits = c(-3,3), breaks = seq(-3,3,1)) +
geom_hline(aes(yintercept = 0)) +
labs(x = NULL, y = "z-score") +
coord_flip() +
facet_wrap(~type + Measure, nrow = 1) +
theme_classic()+
theme(axis.text = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom")#c(.87, .25))
# ggsave(sprintf("%s/results/plots/centrality_plot.png", res_path), width = 5, height = 3.5)
# wrangle to wide format for tabling #
temp_cent %>% select(-contains("fluence")) %>%
gather(key = Measure, value = Centrality, Betweenness: OutStrength) %>%
mutate(var = str_replace(var, "_", " ")) %>%
unite(Measure, Measure, wave, sep = ".") %>%
spread(key = Measure, value = Centrality) %>%
mutate_at(vars(InStrength.1:OutStrength.2), funs(round(.,2))) %>%
mutate_at(vars(Closeness.1:Closeness.2), funs(sprintf("%.2e", .))) %>%
select(-type) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
col.names = c("", rep(c("1","2"), times = 4))) %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T) %>%
#kable_styling(full_width = F) %>%
column_spec(1, width = "4cm") %>%
add_header_above(c(" " = 1, "Betweenness" = 2, "Closeness" = 2,
"In Strength" = 2, "Out Strength" = 2))
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
---|---|---|---|---|---|---|---|---|
A kind | 7 | 5 | 2.14e-03 | 2.10e-03 | 0.11 | 0.14 | 0.13 | 0.13 |
A rude | 3 | 0 | 3.01e-03 | 3.35e-03 | 0.07 | 0.07 | 0.22 | 0.16 |
C lazy | 4 | 3 | 1.75e-03 | 2.43e-03 | 0.19 | 0.16 | 0.12 | 0.16 |
C reliable | 2 | 8 | 1.67e-03 | 2.71e-03 | 0.09 | 0.16 | 0.09 | 0.18 |
E outgoing | 1 | 3 | 1.35e-03 | 2.60e-03 | 0.21 | 0.17 | 0.07 | 0.13 |
E quiet | 3 | 1 | 1.12e-03 | 1.69e-03 | 0.15 | 0.19 | 0.05 | 0.09 |
N depressed | 4 | 0 | 2.32e-03 | 2.58e-03 | 0.12 | 0.11 | 0.14 | 0.16 |
N relaxed | 4 | 1 | 2.15e-03 | 1.51e-03 | 0.20 | 0.26 | 0.16 | 0.10 |
N worried | 13 | 16 | 3.04e-03 | 3.93e-03 | 0.16 | 0.16 | 0.32 | 0.31 |
# wrangle to wide format #
contemp_cent %>% select(-ExpectedInfluence) %>%
gather(key = Measure, value = Centrality, Betweenness: Strength) %>%
mutate(var = str_replace(var, "_", " ")) %>%
unite(Measure, Measure, wave, sep = ".") %>%
spread(key = Measure, value = Centrality) %>%
mutate_at(vars(Strength.1:Strength.2), funs(round(.,2))) %>%
mutate_at(vars(Closeness.1:Closeness.2), funs(sprintf("%.2e", .))) %>%
select(-type) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
col.names = c("", rep(c("1","2"), times = 3))) %>%
kable_styling(bootstrap_options = c("striped","repeat_header"),full_width = T) %>%
#kable_styling(full_width = F) %>%
column_spec(1, width = "4cm") %>%
add_header_above(c(" " = 1, "Betweenness" = 2, "Closeness" = 2,
"Strength" = 2))
1 | 2 | 1 | 2 | 1 | 2 | |
---|---|---|---|---|---|---|
A kind | 3 | 6 | 1.23e-02 | 1.17e-02 | 0.68 | 0.70 |
A rude | 0 | 1 | 9.38e-03 | 9.00e-03 | 0.57 | 0.50 |
C lazy | 2 | 2 | 1.12e-02 | 1.13e-02 | 0.74 | 0.70 |
C reliable | 2 | 2 | 1.14e-02 | 1.19e-02 | 0.67 | 0.68 |
E outgoing | 6 | 6 | 1.13e-02 | 1.12e-02 | 1.07 | 1.08 |
E quiet | 1 | 0 | 1.03e-02 | 9.98e-03 | 0.87 | 0.81 |
N depressed | 1 | 1 | 1.10e-02 | 1.07e-02 | 0.77 | 0.74 |
N relaxed | 8 | 8 | 1.33e-02 | 1.28e-02 | 1.05 | 1.02 |
N worried | 0 | 0 | 1.16e-02 | 1.15e-02 | 0.75 | 0.80 |
Contemporaneous networks are undirected and do not have feedback loops - that is, temporal precedence is unclear when behaviors are rated at the same time (see Figure 2). The strongest edge in the contemporaneous networks was between the two Extraversion items (quiet-outgoing: \(b_{W1}\) = -.61; \(b_{W2}\) = -.63). Indeed, many of the strongest relationships within the contemporaneous were within Big 5 domains (e.g. E1-E2, A1-A2) and were negative, which is not surprising given that one of the items in each domain was negatively keyed. Such relationships were coherent - participants reported feeling more lazy when they were less reliable (and vice versa; \(b_{W1}\) = -.28, \(b_{W2}\) = -.31) and more relaxed when they were less worried (and vice versa; \(b_{W1}\) = -.38, \(b_{W2}\) = -.38). There were notably strong relationships across domains as well. Reports of relaxation co-occurred with reports of feeling both lazy (\(b_{W1}\) = .26; \(b_{W2}\) = .24) and kind (\(b_{W1}\) = .11, \(b_{W2}\) = .08). Reports of kindness, in turn, were associated with feeling more outgoing ($b_{W1} = .13, \(b_{W2}\) = .12) and reliable (\(b_{W1}\) = .11, \(b_{W2}\) = .10).
The strongest edge in the lagged networks in both waves was the feedback loop of the Neuroticism item “worried” (worried, \(b_{W1}\) = .14; \(b_{W2}\) = .16). Feedback loops can be interpreted as partial autocorrelations, which has been termed inertia in the affect literature (Ong & Ram, 2016). In other words, worrying seemed to carry over across time points, strongly predicting itself four hours later. Worry also strongly predicted other nodes, including reports of relaxation (worried - relaxed, \(b_{W1}\) = -.11; \(b_{W2}\) = -.08), being quiet (worried - quiet, \(b_{W1}\) = 03; \(b_{W2}\) = .08), and feeling depressed (\(b_{W1}\) = .05; \(b_{W2}\) = .04). Notably, many of the strongest edges included one or more Neuroticism nodes - ratings of items from the Neuroticism domain strongly predicted each other across time - with the top 5 connections across both waves including a Neuroticism node. Such a pattern was not observed within other traits - Extraversion (b’s < |.005|), Agreeableness (b’s < |.02|), and Conscientiousness (b’s < |.03|) items weakly predicted each other over four hour intervals. However, several items exhibited strong inertia - reports of being lazy (\(b_{W1}\) = .06; \(b_{W2}\) = .08), reliable (\(b_{W1}\) = .04; \(b_{W2}\) = .06), and kind (\(b_{W1}\) = .03; \(b_{W2}\) = .06) were significant predictors of themselves. Feedback loops are critical features of lagged networks because although they do not explain shifts between behaviors over time, they do explain the likelihood of continuing to engage in a behavior once you begin.
Next, we examined the centrality of different nodes in the network. Centrality indexes the relative importance of different nodes in the network - that is, nodes’ abilities to directly impact other nodes in the network. Central nodes represent patterns of influence shared across people, while peripheral nodes represent more unique patterns of influence. Centrality for all nodes in both lagged and contemporaneous networks across waves are displayed in Figure 3.
In the contemporaneous networks, how outgoing and relaxed participants reported had strong direct impacts on their other concurrent behaviors. The worried (N) and rudeness (A) nodes had notably little direct impact on other behaviors. In other words, in the moment, becoming more worried (N) or rude (A) would not strongly impact other concurrent behaviors, whereas feeling more outgoing and relaxed would. Nodes within traits tended to markedly differ in their centrality indices. For example, quiet (E) and depressed were at or below overall average centrality across all three measures, while outgoing (E) and relaxed (N) were well above average. In other words, behaviors, not traits, tended to drive concurrent behaviors.
In the lagged networks, worried (N) and relaxed (N) had the highest out-strength and in-strength, respectively, across both waves. That is, how worried you reported being strongly predicted many other behaviors four hours later but was little impacted by other behaviors. In contrast, how relaxed you reported was strongly predicted by what you were doing four hours ago but did not strongly predict your behavior later. Reports of how rude (A) and kind (A) were the lowest in in-strength. How rude or kind participants reported being was little impacted by their previous behaviors. Conversely, participants’ reports of how quiet (E), outgoing (E), and reliable (C) they were had little bearing on their later behaviors. Together this suggests that nodes related to emotions (e.g. worried, relaxed) notably impact behavior, and nodes related to social behaviors (e.g. kind, outgoing) are little impacted by previous behaviors and little impact future behaviors.
Next, we assessed the stability of the population networks over time. To assess stability, we first calculated the profile correlation between the mlVAR fixed effects edge weights across the waves for both lagged and contemporaneous effects. Profile correlations index the stability of a profile of values over time - that is, how stable the positions of values are relative to all other values. Population networks were highly stable across waves. Contemporaneous network stability was almost at ceiling (\(r\) = .99). Lagged network stability was still quite strong (\(r\) = .68) but was significantly less stable than the contemporaneous networks (\(z\) = 9.28, \(p\) < .001).
# Profile (Ipsative) Edge Consistency
# The easiest and most straightforward way to assess the sconsistency in responses across
# time is simply to correlate the regression coefficients at each time point with those
# at the other time points. We do this below for models generated using raw and centered data.
# For these correlations, we are correlating two vectors, each of which contains 81
# weights (9 x 9). We do so once for lagged and once for contemporaneous effects.
cors <- data.frame(
comparison = c("W1 v. W2"),
type = c("lagged", "contemporaneous"),
raw_cor =
c(cor(sum_fit1_w1$temporal$fixed,
sum_fit1_w2$temporal$fixed),
cor(sum_fit1_w1$contemporaneous$pcor,
sum_fit1_w2$contemporaneous$pcor)))
cors %>%
kable(., "html", booktabs = T, escape = F, digits = 2) %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
comparison | type | raw_cor |
---|---|---|
W1 v. W2 | lagged | 0.63 |
W1 v. W2 | contemporaneous | 0.99 |
Next, we calculated the profile correlations between the centrality indices of lagged and contemporaneous effects across the waves separately for each measure of centrality. Across both waves, centrality was stable. Lagged in strength (\(r\) = .86) was slightly more stable than lagged out strength (\(r\) = .70). Contemporaneous strength centrality stability (\(r\) = .98) was significantly more stable than lagged in strength (\(z\) = 2.66, \(p\) < .01) but not out strength (\(z\) = 1.92, \(p\) = .054).
#### Profile (Ipsative) Centrality Consistency
combined_centrality %>%
select(-z) %>%
spread(key = wave, value = Centrality) %>%
group_by(type, Measure) %>%
summarize(r = cor(`1`, `2`, use = "pairwise")) %>%
spread(key = type, value = r) %>% arrange(Contemporaneous) %>%
kable(., "html", booktabs = T, escape = F, digits = 2,
caption = "Profile Correlations of Population Level Centrality Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
Measure | Contemporaneous | Lagged |
---|---|---|
Betweenness | NA | NA |
Closeness | NA | NA |
InStrength | NA | NA |
OutStrength | NA | NA |
Strength | NA | NA |
Typically, idiographic personality structure has been approached from a factor analytic standpoint using so-called P-technique factor analysis (e.g. Borkenau & Ostendorpf, 1998; Molenaar, 2004). Thus, to contrast with individual differences in network consistency, we also sought to replicate past research by conducting a series of individual level idiographic P-factor analyses of repeated-measures data. Concurrent examination of both factor analytic and network approaches allows us to better understand the relative advantages of each.
For the idiographic P-factor analyses, we calculated a time series varimax rotated factor analysis for each participant at each wave (\(N_{W1}\) = 348, \(N_{W2}\) = 146), using the psych package in R (Revelle, 2014). Using an eigenvalue criteria of 1, we found that the time-series factor solution ranged from 1 to 4 factors, with a median of 3 for both waves. 4.9% of the P-factor solutions in the first wave and 6.4% of the P-factor solutions in the second wave had the number of factors expected by the 9 ESM items putative factor structure (4). Despite this, the content of the 4 extracted factors of even this small minority of factor solutions differed from expectations. Across all subjects, the first factor explained between 11.4% and 37.7% (\(M_{W1}\) = 20.3%, \(SD_{W1}\) = 3.9%) of the variance in Wave 1 and between 9.6% and 37.7% (\(M_{W2}\) = 19.5%, \(SD_{W2}\) = 4.3%) in Wave 2. The cumulative variance explained by the extracted factor solution ranged from 12.4% to 79.6% (\(M_{W1}\) = 44.6%, \(SD_{W1}\) = 11.4%) in wave 1 and from 13.5% to 70.7% (\(M_{W2}\) = 42.1%, \(SD_{W2}\) = 10.8%) in wave 2.
# calculate individual for each variable
w1_pop <- w1 %>%
mutate_at(vars(A_rude:N_relaxed), funs(mapvalues(., from = 1:5, to = 5:1))) %>%
gather(key = item, value = value, A_rude:N_worried) %>%
separate(item, c("trait", "item"), sep = "_") %>%
group_by(SID, trait, wave) %>%
summarize(esm = mean(value, na.rm = T)) %>%
ungroup() %>% mutate(trait = paste(trait, "esm", sep = ".")) %>%
spread(key = trait, value = esm) %>%
full_join(w1 %>%
group_by(SID) %>%
summarize_at(vars(A_rude:N_worried), funs(mean)) %>%
ungroup())
w2_pop <- w2 %>%
mutate_at(vars(A_rude:N_relaxed), funs(mapvalues(., from = 1:5, to = 5:1))) %>%
gather(key = item, value = value, A_rude:N_worried) %>%
separate(item, c("trait", "item"), sep = "_") %>%
group_by(SID, trait, wave) %>%
summarize(esm = mean(value, na.rm = T)) %>%
ungroup() %>% mutate(trait = paste(trait, "esm", sep = ".")) %>%
spread(key = trait, value = esm) %>%
full_join(w2 %>%
group_by(SID) %>%
summarize_at(vars(A_rude:N_worried), funs(mean)) %>%
ungroup())
w1w2_subs <- w1_pop$SID[w1_pop$SID %in% w2_pop$SID]
w1_pop$wave <- "1"; w2_pop$wave <- "2"
composites.long <- w1_pop %>%
full_join(w2_pop) %>%
filter(SID %in% w1w2_subs) %>%
gather(key = Variable, value = composite,-SID, -wave)
r_cors_w1 <- cor(w1_pop[,3:11])
r_cors_w2 <- cor(w2_pop[,3:11])
fa_w1 <- fa(r_cors_w1, nfactors = 7, rotate = "varimax",
n.obs = length(w1_pop))
fa_w2 <- fa(r_cors_w2, nfactors = 7, rotate = "varimax",
n.obs = length(w2_pop))
factors_w1 <- sum(fa_w1$values > 1)
factors_w2 <- sum(fa_w2$values > 1)
sink("/dev/null")
pop_var_w1 <- print(fa_w1)$Vaccounted[3, factors_w1]
## Factor Analysis using method = minres
## Call: fa(r = r_cors_w1, nfactors = 7, n.obs = length(w1_pop), rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR3 MR2 MR4 MR1 MR5 MR6 MR7 h2 u2 com
## A.esm -0.09 0.11 -0.05 -0.02 0.46 0.00 0.00 0.23 0.7650 1.2
## C.esm -0.92 0.18 -0.13 -0.07 0.26 -0.11 0.10 0.99 0.0088 1.4
## E.esm -0.15 0.92 -0.14 -0.04 0.27 0.00 -0.04 0.96 0.0373 1.3
## N.esm 0.17 -0.11 0.80 0.55 -0.04 0.03 -0.04 0.99 0.0074 1.9
## A_rude 0.42 0.08 0.24 0.25 0.01 0.34 0.00 0.42 0.5844 3.4
## E_quiet 0.13 -0.95 0.03 0.07 -0.04 -0.03 -0.04 0.93 0.0695 1.1
## C_lazy 0.90 -0.20 0.02 0.16 -0.04 -0.04 0.09 0.89 0.1088 1.2
## N_relaxed -0.06 0.09 -0.93 -0.15 0.12 -0.07 -0.02 0.92 0.0800 1.1
## N_depressed 0.24 -0.10 0.41 0.82 -0.05 0.08 0.01 0.92 0.0762 1.7
##
## MR3 MR2 MR4 MR1 MR5 MR6 MR7
## SS loadings 1.98 1.87 1.77 1.11 0.37 0.14 0.02
## Proportion Var 0.22 0.21 0.20 0.12 0.04 0.02 0.00
## Cumulative Var 0.22 0.43 0.62 0.75 0.79 0.80 0.81
## Proportion Explained 0.27 0.26 0.24 0.15 0.05 0.02 0.00
## Cumulative Proportion 0.27 0.53 0.77 0.93 0.98 1.00 1.00
##
## Mean item complexity = 1.6
## Test of the hypothesis that 7 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 7.42 with Chi Square of 75.43
## The degrees of freedom for the model are -6 and the objective function was 0
##
## The root mean square of the residuals (RMSR) is 0
## The df corrected root mean square of the residuals is NA
##
## The harmonic number of observations is 15 with the empirical chi square 0 with prob < NA
## The total number of observations was 15 with Likelihood Chi Square = 0 with prob < NA
##
## Tucker Lewis Index of factoring reliability = 8.49
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## MR3 MR2 MR4 MR1 MR5
## Correlation of (regression) scores with factors 0.98 0.98 0.97 0.93 0.72
## Multiple R square of scores with factors 0.95 0.96 0.93 0.87 0.53
## Minimum correlation of possible factor scores 0.91 0.91 0.87 0.74 0.05
## MR6 MR7
## Correlation of (regression) scores with factors 0.50 0.53
## Multiple R square of scores with factors 0.25 0.28
## Minimum correlation of possible factor scores -0.50 -0.44
pop_var_w2 <- print(fa_w2)$Vaccounted[3, factors_w2]
## Factor Analysis using method = minres
## Call: fa(r = r_cors_w2, nfactors = 7, n.obs = length(w2_pop), rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR3 MR2 MR5 MR1 MR4 MR6 MR7 h2 u2 com
## A.esm -0.11 0.18 -0.07 -0.05 0.65 -0.05 0.00 0.48 0.5171 1.3
## C.esm -0.91 0.12 -0.15 -0.12 0.22 -0.05 0.03 0.93 0.0679 1.3
## E.esm -0.13 0.92 -0.15 -0.08 0.26 0.14 0.12 0.99 0.0128 1.4
## N.esm 0.18 -0.11 0.80 0.54 -0.05 0.09 -0.07 0.99 0.0061 2.0
## A_rude 0.44 0.12 0.17 0.23 -0.18 0.41 0.00 0.50 0.5021 3.4
## E_quiet 0.08 -0.96 0.04 0.08 -0.06 0.06 0.09 0.96 0.0390 1.1
## C_lazy 0.96 -0.15 0.05 0.13 0.02 0.05 0.02 0.96 0.0435 1.1
## N_relaxed -0.08 0.08 -0.89 -0.12 0.09 -0.03 -0.03 0.83 0.1678 1.1
## N_depressed 0.24 -0.16 0.37 0.79 -0.08 0.09 0.01 0.86 0.1415 1.8
##
## MR3 MR2 MR5 MR1 MR4 MR6 MR7
## SS loadings 2.07 1.89 1.65 1.04 0.60 0.22 0.03
## Proportion Var 0.23 0.21 0.18 0.12 0.07 0.02 0.00
## Cumulative Var 0.23 0.44 0.62 0.74 0.81 0.83 0.83
## Proportion Explained 0.28 0.25 0.22 0.14 0.08 0.03 0.00
## Cumulative Proportion 0.28 0.53 0.75 0.89 0.97 1.00 1.00
##
## Mean item complexity = 1.6
## Test of the hypothesis that 7 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 7.14 with Chi Square of 72.55
## The degrees of freedom for the model are -6 and the objective function was 0
##
## The root mean square of the residuals (RMSR) is 0
## The df corrected root mean square of the residuals is NA
##
## The harmonic number of observations is 15 with the empirical chi square 0 with prob < NA
## The total number of observations was 15 with Likelihood Chi Square = 0 with prob < NA
##
## Tucker Lewis Index of factoring reliability = 12.081
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## MR3 MR2 MR5 MR1 MR4
## Correlation of (regression) scores with factors 0.98 0.99 0.95 0.88 0.80
## Multiple R square of scores with factors 0.96 0.97 0.90 0.78 0.63
## Minimum correlation of possible factor scores 0.93 0.94 0.80 0.56 0.27
## MR6 MR7
## Correlation of (regression) scores with factors 0.65 0.56
## Multiple R square of scores with factors 0.42 0.32
## Minimum correlation of possible factor scores -0.16 -0.37
sink()
Parallel Analysis
fa_par_w1 <- fa.parallel(w1_pop %>% select(A_rude:N_worried), fm = 'ml',
fa = 'fa', n.iter = 50, SMC = T, quant = .95)
## Parallel analysis suggests that the number of factors = 4 and the number of components = NA
fa_par_w2 <- fa.parallel(w2_pop %>% select(A_rude:N_worried), fm = 'ml',
fa = 'fa', n.iter = 50, SMC = T, quant = .95)
## Parallel analysis suggests that the number of factors = 4 and the number of components = NA
cor_fun <- function(df, type){
if(type == "fa"){r <- cor(df %>% select(A_rude:N_worried), use = "pairwise")}
else{
df <- df %>% select(A_rude:N_worried) %>% mutate_all(funs(lag = lag))
r <- cor(df[,10:18], df[,1:9], use = "pairwise")
}
return(r)
}
par_fun <- function(df, n){
fa.parallel(df, fm = 'ml', n.obs = n,
fa = 'fa', n.iter = 50, SMC = T, quant = .95)
}
fa_fit <- w1 %>% full_join(w2) %>%
group_by(SID, wave, count) %>%
arrange(SID, wave) %>%
nest() %>%
full_join(crossing(wave = c("1","2"), fa_type = c("fa", "dfa"))) %>%
mutate(cor = map2(data, fa_type, possibly(cor_fun, NA_real_)),
fa_par = map2(data, count, possibly(par_fun, NA_real_)),
nfact = map_dbl(fa_par, possibly(~.$nfact, NA_real_)))
fa_fun <- function(df,nfact, SID, wave, fa_type){
print(sprintf("%s Wave %s %s", SID, wave, fa_type))
symm <- ifelse(fa_type == "dfa", FALSE, TRUE)
if(!is.na(nfact) & nfact != 0){fa(df, nfactors = nfact, symmetric = symm)}
}
fa_fit <- fa_fit %>%
filter(!(SID == 13266 & wave == 1 & fa_type == "dfa")) %>%
filter(!(SID == 28072 & wave == 2 & fa_type == "dfa")) %>%
mutate(fa = pmap(list(cor, nfact, SID, wave, fa_type), possibly(fa_fun, NA_real_)))
Vaccounted_fun <- function(fa, nfactor){
y <- print(fa)$Vaccounted[3,]
z <- y[nfactor]
return(z)
}
sink("/dev/null")
#eigenvalue > 1 rule
fa_fit <- fa_fit %>% filter(!nfact == 0 & !is.na(nfact)) %>%
mutate(Vacc_first = map_dbl(fa, possibly(~print(.)$Vaccounted[3,1], NA_real_)),
Vacc_par = map2_dbl(fa, nfact, possibly(Vaccounted_fun, NA_real_)))
sink()
# descriptives of extracted factors from p-factors
fa_fit %>%
select(fa_type, SID, wave, nfact, Vacc_first, Vacc_par) %>%
gather(key = measure, value = value, nfact, Vacc_first, Vacc_par) %>%
group_by(fa_type, wave, measure) %>%
summarize_at(vars(value), funs(M = mean, SD = sd, Median = median, Min = min, Max = max), na.rm = T) %>%
ungroup() %>%
gather(key = ct, value = value, M:Max) %>%
unite(measure, measure, wave, sep = ".") %>%
spread(key = measure, value = value) %>%
select(-fa_type) %>%
kable(., "html", escape = F, booktabs = T, digits = 2,
col.names = c("Measure", rep(c("W1", "W2"), times = 3)),
caption = "Descriptives of P-factor Analyses") %>%
add_header_above(header = c(" " = 1, "Parallel Analysis Factors" = 2, "Variance Accounted" = 2,
"Variance First Factor" = 2)) %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T) %>%
group_rows("DFA", 1,5) %>%
group_rows("FA", 6,10)
Measure | W1 | W2 | W1 | W2 | W1 | W2 |
---|---|---|---|---|---|---|
DFA | ||||||
M | 3.36 | 3.40 | 0.35 | 0.35 | 0.85 | 0.84 |
Max | 7.00 | 9.00 | 0.68 | 0.77 | 1.00 | 1.00 |
Median | 3.00 | 3.00 | 0.32 | 0.34 | 0.87 | 0.88 |
Min | 1.00 | 1.00 | 0.18 | 0.18 | 0.47 | 0.50 |
SD | 1.35 | 1.45 | 0.10 | 0.11 | 0.10 | 0.11 |
FA | ||||||
M | 3.32 | 3.44 | 0.23 | 0.23 | 0.61 | 0.60 |
Max | 7.00 | 7.00 | 0.44 | 0.42 | 0.87 | 0.83 |
Median | 3.00 | 3.00 | 0.22 | 0.21 | 0.62 | 0.61 |
Min | 1.00 | 1.00 | 0.12 | 0.14 | 0.28 | 0.32 |
SD | 1.35 | 1.37 | 0.05 | 0.05 | 0.11 | 0.11 |
cong_fun <- function(sid, type){
fa1 <- (fa_fit %>% filter(fa_type == type & SID == sid & wave == 1))$fa[[1]]
fa2 <- (fa_fit %>% filter(fa_type == type & SID == sid & wave == 2))$fa[[1]]
factor.congruence(fa1, fa2)
}
ip_eigen_fun <- function(sid, type){
fa1 <- (fa_fit %>% filter(fa_type == type & SID == sid & wave == 1))$fa[[1]]
fa2 <- (fa_fit %>% filter(fa_type == type & SID == sid & wave == 2))$fa[[1]]
cor(fa1$values, fa2$values, use = "pairwise")
}
fa_cong <- fa_fit %>%
filter(!is.na(fa)) %>%
group_by(SID, fa_type) %>%
summarize(n = n()) %>%
ungroup() %>%
filter(n == 2) %>%
mutate(congruence = map2(SID, fa_type, possibly(cong_fun, NA_real_)),
ip_eigen = map2_dbl(SID, fa_type, possibly(ip_eigen_fun, NA_real_)))
fa_cong %>%
ggplot(aes(x = ip_eigen)) +
geom_histogram(aes(fill = fa_type), color = "black") +
facet_grid(~fa_type) +
theme_classic() +
theme(legend.position = "none")
fa_extract_fun <- function(fit){
tibble(var = rownames(fit$weights), eigen = fit$values)
}
fa_fit <- fa_fit %>%
mutate(eigen = map(fa, possibly(fa_extract_fun, NA_real_)))
fa_fit %>%
filter(!is.na(eigen)) %>%
group_by(SID, fa_type) %>%
mutate(n = n()) %>%
filter(n == 2) %>%
unnest(eigen) %>%
group_by(wave, fa_type, var) %>%
mutate(rank = dense_rank(desc(eigen))) %>%
select(-count, -nfact, -eigen, -n, -Vacc_first, -Vacc_par) %>%
spread(key = wave, value = rank) %>%
group_by(fa_type, var) %>%
summarize(r = cor(`1`, `2`, use = "pairwise")) %>%
spread(key = fa_type, value = r)
save(fa_fit, fa_cong, file = "/Users/emoriebeck/Box/network/PAIRS/consistency/results/fa_results.RData")
Differences were not unique to the two example subjects. Globally, we can compare each participant’s profile of edge weights to all other participants’ profiles to assess similarity in network structure. On average, pairwise congruence was higher in the contemporaneous networks (\(M_{W1}\) = .44; \(M_{W2}\) = .45) than the lagged networks (\(M_{W1}\) = .01; \(M_{W2}\) = .01). The contemporaneous estimates suggest that there are similarities across people, with their profiles showing modest correlations, on average. This is to be expected, as it suggests that relationship between variables that are presumed in factor models is justified. In contrast, it appears that people have very little overlap in lagged edge weights, on average.
r_fun <- function(df){
x <- data.frame((df %>% select(-SID)))
rownames(x) <- df$SID
y <- cor(t(x), use = "pairwise")
y[upper.tri(y, diag = T)] <- NA
z <- tbl_df(data.frame(y) %>%
mutate(SID = colnames(y)) %>%
gather(key = SID2, value = r, -SID) %>%
mutate(SID2 = gsub("X", "", SID2))) %>%
filter(!is.na(r))
}
pcong_cors <- temp_long %>%
select(SID, wave, lambda_scale, type, from, to, weight) %>%
unite(var, from, to, sep = ".") %>%
full_join(contemp_long %>% select(SID, wave, lambda_scale, var, type, weight)) %>%
spread(key = var, value = weight) %>%
group_by(wave, lambda_scale, type) %>%
nest() %>%
mutate(pcr = map(data, r_fun))
pcong_cors %>% unnest(pcr, .drop = T) %>%
filter(!is.na(r)) %>%
group_by(wave, lambda_scale, type) %>%
summarize(mean = meanSD_r2z2r(r)[1],
sd = sd(r, na.rm = T)) %>%
kable(., "html", digits = 2, booktabs = T,
col.names = c("Wave","Model", "Type", "M", "SD"),
caption = "Descriptives of Pairwise Congruence Correlations") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
Wave | Model | Type | M | SD |
---|---|---|---|---|
1 | .25 | Contemporaneous | 0.49 | 0.26 |
1 | .25 | Lagged | 0.01 | 0.14 |
1 | .5 | Contemporaneous | 0.51 | 0.26 |
1 | .5 | Lagged | 0.00 | 0.15 |
1 | association | Contemporaneous | 0.49 | 0.19 |
1 | association | Lagged | 0.04 | 0.17 |
1 | gimme | Contemporaneous | 0.32 | 0.21 |
1 | gimme | Lagged | 0.02 | 0.16 |
1 | mlVAR_EB | Contemporaneous | 0.90 | 0.05 |
1 | mlVAR_EB | Lagged | 0.64 | 0.18 |
1 | scaled | Contemporaneous | 0.61 | 0.30 |
1 | scaled | Lagged | 0.00 | 0.15 |
1 | unregularized | Contemporaneous | 0.26 | 0.19 |
1 | unregularized | Lagged | 0.01 | 0.14 |
2 | .25 | Contemporaneous | 0.49 | 0.28 |
2 | .25 | Lagged | 0.01 | 0.14 |
2 | .5 | Contemporaneous | 0.50 | 0.29 |
2 | .5 | Lagged | 0.00 | 0.15 |
2 | association | Contemporaneous | 0.49 | 0.20 |
2 | association | Lagged | 0.04 | 0.18 |
2 | gimme | Contemporaneous | 0.32 | 0.24 |
2 | gimme | Lagged | 0.04 | 0.19 |
2 | mlVAR_EB | Contemporaneous | 0.92 | 0.06 |
2 | mlVAR_EB | Lagged | 0.73 | 0.14 |
2 | scaled | Contemporaneous | 0.60 | 0.34 |
2 | scaled | Lagged | 0.00 | 0.14 |
2 | unregularized | Contemporaneous | 0.35 | 0.19 |
2 | unregularized | Lagged | 0.02 | 0.14 |
For comparison purposes, we also created a composite of ESM assessments. We first calculated individuals’ mean ratings on each of the personality variable for each wave. We also calculated composite scores for each Big 5 traits at each measurement point. Then, for each wave and item / composite combination, we assigned ranks to participants based on their ESM composites. We used the ranks to calculate rank-order correlations using Spearman correlations, resulting in 14 rank order correlations (1 for each of the 9 items and 4 composites). Overall, rank order stability was fairly high across the two years for both items (range .46 to .74) and composites (range .68 to .79). Finally, we calculated profile correlations for items and composites separately for each participant across the two waves. Overall, consistency of both Big 5 composites (M = .97) and items (M = .91) was very strong over two years. There were also interindividual differences in intraindividual consistency of both composites (SD = .66) and items (SD = .47). We use these to as a benchmark to which to compare rank order and ipsative consistency of idiographic networks.
#compute scale scores for BF domains
#first create the keys by location (the conventional way)
keys.list <- list(
E.esm = c(-2, 6),
A.esm = c(-1, 7),
C.esm = c(-3, 8),
N.esm = c(-4, 5, 9))
keys <- make.keys(9,keys.list,item.labels=colnames(w1)[5:13])
# score the items and save to columns
ncol_w1 <- dim(w1)[2]; ncol_w2 <- dim(w2)[2]
w1[(ncol_w1 + 1):(ncol_w1 + 4)] <- scoreItems(keys,w1[,5:13],min=1,max=5)$scores
w2[(ncol_w2 + 1):(ncol_w2 + 4)] <- scoreItems(keys,w2[,5:13],min=1,max=5)$scores
# rename the new columns
colnames(w1)[(ncol_w1 + 1):(ncol_w1 + 4)] <- names(keys.list)
colnames(w2)[(ncol_w2 + 1):(ncol_w2 + 4)] <- names(keys.list)
# create a data frame merging the responses
esm.composites <- w1 %>% mutate(wave = "1") %>%
select(SID, wave, A_rude:N_worried, E.esm:N.esm) %>%
full_join(w2 %>% mutate(wave = "2") %>%
select(SID, wave, A_rude:N_worried, E.esm:N.esm)) %>%
mutate(SID = as.character(SID)) %>%
gather(key = item, value = value, A_rude:N.esm) %>%
group_by(SID, wave, item) %>%
summarize(mean = mean(value, na.rm = T)) %>%
spread(key = item, value = mean)
cor_fun <- function(x){
cor(x$`1`, x$`2`, use = "pairwise", method = "spearman")
}
mean_cors <- composites.long %>%
mutate(type = ifelse(grepl("_", Variable) == T, "Item", "Composite")) %>%
filter(SID %in% w1w2_subs) %>%
group_by(Variable, wave) %>%
mutate(rank = min_rank(desc(composite))) %>%
select(-composite) %>%
spread(key = wave, value = rank) %>%
group_by(Variable, type) %>%
nest() %>%
mutate(r = map_dbl(data, cor_fun))
mean_cors %>%
group_by(type) %>%
summarise(meanr = meanSD_r2z2r(r)[1],
sd = meanSD_r2z2r(r)[2],
min = min(r),
max = max(r)) %>%
kable(., booktabs = T, digits = 2, format = "html",
caption = "Descriptives of ESM Composites Rank-Order Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
type | meanr | sd | min | max |
---|---|---|---|---|
Composite | 0.63 | 0.24 | 0.46 | 0.79 |
Item | 0.66 | 0.13 | 0.47 | 0.73 |
w1$wave <- "1"; w2$wave <- "2"
mean_profile_cors <- w1 %>%
select(SID, wave, A_rude:N_worried, E.esm:N.esm) %>%
full_join(select(w2, wave, SID, A_rude:N_worried, E.esm:N.esm)) %>%
filter(SID %in% w1w2_subs) %>%
group_by(wave, SID) %>%
summarize_at(vars(A_rude:N.esm), funs(mean(., na.rm = T))) %>%
ungroup() %>%
gather(key = variable, value = rating, A_rude:N.esm) %>%
mutate(type = ifelse(grepl("_", variable) == T, "Item", "Composite")) %>%
group_by(SID, type) %>%
summarize(cor = cor(rating[wave == "1"], rating[wave == "2"], use = "pairwise.complete.obs")) %>%
ungroup()
mean_profile_cors %>%
ggplot(aes(x = cor)) +
geom_histogram(color = "black", fill = "gray") +
facet_grid(.~type) +
labs(x = "Profile Correlation", y = "Frequency", title = "Profile Correlations of ESM Composites") +
scale_x_continuous(lim = c(0,1), breaks = seq(0,1,.25)) +
theme_bw()
mean_profile_cors %>%
group_by(type) %>%
summarise(meanr = meanSD_r2z2r(cor)[1],
sd = meanSD_r2z2r(cor)[2],
min = min(cor),
max = max(cor)) %>%
kable(., booktabs = T, digits = 2, format = "html",
caption = "Descriptives of ESM Composites Ipsative Consistency") %>%
kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
type | meanr | sd | min | max |
---|---|---|---|---|
Composite | 0.97 | 0.62 | 0.14 | 1 |
Item | 0.93 | 0.45 | 0.56 | 1 |
An alternative way to index individual differences in network structure. To index whether people in general had similar edge weights (e.g., the relationship between outgoing and quiet, both items from extraversion) we is to examine the standard deviation of edge weights for both contemporaneous and lagged idiographic networks see Figure Sxx in the Supplementary Materials). Significant variation existed across edges and types of networks. In the contemporaneous networks, the outgoing (E) - quiet (E) edge in the contemporaneous networks was most variable in both waves (\(SD_{W1}\) = .28; \(SD_{W2}\) = .32), indicating that not everyone had the typical strong, negative correlation between feeling outgoing and quiet. The most variable edges for lagged were lazy (C) - rude (A) in wave 1 (\(SD\) = .87) and reliable (C) - worried (N) in wave 2 (\(SD\) = .92). Overall, it appears that most people manifest some similar behaviors when they feel they are rude (e.g., not-quiet, not-relaxed), but this is not always the case as many people were rude while being lazy time (Subject 10493) while others were rude while not being lazy (Subject 10549).
temp_long %>%
rename(Var1 = from, Var2 = to) %>%
select(wave, SID, type, lambda_scale, Var1, Var2, weight) %>%
full_join(select(contemp_long, SID, wave, type, lambda_scale, Var1, Var2, weight)) %>%
filter(Var1 == "E_quiet" & Var2 == "N_depressed" & type == "Contemporaneous") %>%
mutate(sign = sign(weight)) %>%
arrange(desc(weight))
# group_by(wave, sign) %>%
# summarize(n = n())
ew_ind_diff <- temp_long %>%
rename(Var1 = from, Var2 = to) %>%
select(wave, type, lambda_scale, Var1, Var2, weight) %>%
full_join(select(contemp_long, wave, type, lambda_scale, Var1, Var2, weight)) %>%
group_by(type, wave, lambda_scale, Var1, Var2) %>%
summarize(sd = fisherz2r(sd(fisherz(weight), na.rm = T)))
graph_fun <- function(dat, type, wave){
if(type == "Lagged"){
qgraph(dat, directed = T, node.width = 2, arrows = T, layout = "circle",
title=sprintf("%s Wave %s", type, wave), edge.color = "blue",
mar = rep(6,6), label.font = 2, label.fill.vertical = 1,
label.fill.horizontal = 1, color = "white")
} else if(type == "Contemporaneous"){
qgraph(dat, directed = F, node.width = 2, arrows = F, layout = "circle",
title=sprintf("%s Wave %s", type, wave), edge.color = "blue",
mar = rep(6,6), label.font = 2, label.fill.vertical = 1,
label.fill.horizontal = 1, color = "white")
}
}
par(mfrow = c(2,2))
ew_ind_diff_nested <- ew_ind_diff %>% ungroup() %>%
mutate(Var1 = str_replace(Var1, "_", "\n"),
Var2 = str_replace(Var2, "_", "\n")) %>%
group_by(type, lambda_scale, wave) %>%
nest() %>%
arrange(wave, lambda_scale, rev(type)) %>%
mutate(graph = pmap(list(data, type, wave), graph_fun))
To look at individual differences in centrality, we can compute the standard deviation of the each edge for each measure. We do so below and display in a plot.
temp_centrality %>%
gather(key = measure, value = value, Betweenness:OutStrength) %>%
full_join(contemp_centrality %>%
gather(key = measure, value = value, Betweenness:Strength)) %>%
group_by(SID, wave, type, lambda_scale, measure) %>%
mutate(z = as.numeric(scale(value))) %>%
ungroup() %>%
group_by(wave, lambda_scale, var, measure, type) %>%
mutate(sd = sd(value, na.rm = T)) %>%
filter(grepl("trengt", measure) & lambda_scale == ".25") %>%
ungroup() %>%
mutate(wave = as.character(wave)) %>%
ggplot(aes(x = var, y = sd, group = wave))+
geom_line(aes(linetype = wave), color = "black", size = .3) +
geom_point(aes(shape = wave), size = 2) +
labs(x = NULL, y = "z-score", linetype = "Wave", shape = "Wave") +
scale_y_continuous(limits = c(0,3), breaks = seq(0,3,1)) +
geom_hline(aes(yintercept = 0)) +
coord_flip() +
facet_wrap(~type + measure, nrow = 1) +
theme_classic()+
theme(axis.text = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom")#c(.75, .25))
consis_rs <- ip_cors %>%
mutate(type2 = "Edge Weights") %>% rename(r = cors) %>%
full_join(ip_cent_cors %>% filter(grepl("trength", measure)) %>%
mutate(type2 = "Centrality") %>% unite(type, type, measure, sep = ".")) %>%
full_join(mean_profile_cors %>% mutate(type2 = type, type = "Composites") %>%
rename(r = cor)) %>%
full_join(ip_split_cors %>% mutate(type2 = sprintf("Edge Weights: %s", split_type)) %>%
select(-split_type) %>% unite(type, type, wave, sep = ".")) %>%
ungroup() %>%
unite(type, type, type2, lambda_scale, sep = "_") %>%
spread(key = type, value = r) %>%
select(-SID) %>%
cor(., use = "pairwise")
# new.names <- c("Big 5 Composites", "Big 5 Item Composites", "Contemporaneous Edge Weights",
# "Contemporaneous Odd-Even Edge Weights (W1)","Contemporaneous Split-Half Edge Weights (W1)",
# "Contemporaneous Odd-Even Edge Weights (W2)","Contemporaneous Split-Half Edge Weights (W2)",
# "Contemporaneous Strength Centrality", "Lagged Edge Weights",
# "Lagged Odd-Even Edge Weights (W1)","Lagged Split-Half Edge Weights (W1)",
# "Lagged Odd-Even Edge Weights (W2)","Lagged Split-Half Edge Weights (W2)",
# "Lagged In Strength Centrality", "Lagged Out Strength Centrality")
#
# consis_rs[lower.tri(consis_rs)] <- sprintf("%.2f", consis_rs[lower.tri(consis_rs)])
# consis_rs[upper.tri(consis_rs)] <- ""
# diag(consis_rs) <- "--"
# data.frame(consis_rs) %>%
# mutate(var = rownames(.),
# var = mapvalues(var, unique(var), new.names),
# var = paste(seq(1, ncol(consis_rs),1), var, sep = ". ")) %>%
# select(var, everything()) %>%
# setNames(c("Measure", seq(1,ncol(consis_rs),1))) %>%
# kable(., "html", booktabs = T, escape = F, digits = 2,
# caption = "Correlations Between Ipsative Consistency Measures") %>%
# kable_styling(bootstrap_options = c("striped","repeat_header"), full_width = T)
# read outcome variables from wave 1 #
target.ratings.initial.w1 <- tbl_df(read.csv(url(sprintf("%s/raw/master/data/Wave 1/target_w1_RENAMED.csv?raw=T", res_path)))) %>%
mutate(wave = "1", ts.IDnum.w1 = ifelse(ts.IDnum.w1 < 10000, ts.IDnum.w1 + 10000, ts.IDnum.w1))
target.ratings.initial.w2 <- tbl_df(read.csv(sprintf("%s/data/Wave 4/home_w4_RENAMED.csv", res_path))) %>%
mutate(wave = "2", ts.IDnum.w4 = ifelse(ts.IDnum.w4 < 10000, ts.IDnum.w4 + 10000, ts.IDnum.w4))
names.w1 <- colnames(target.ratings.initial.w1)
names.w2 <- colnames(target.ratings.initial.w2)
names.w1 <- gsub(".w1", "", names.w1)
names.w2 <- gsub(".w4", "", names.w2)
colnames(target.ratings.initial.w1) <- names.w1
colnames(target.ratings.initial.w2) <- names.w2
target.ratings <- target.ratings.initial.w1 %>%
full_join(target.ratings.initial.w2 %>%
mutate(ts.AGQ03 = as.numeric(stringr::str_replace(ts.AGQ03, ",", ".")))) %>%
select(wave,contains("ts"), -X, -(ts.startDateTime:ts.PRO17), -ts.DEM04,
-(ts.DEM06:ts.DEM09), -(ts.DEM15:ts.DEM16), contains(".con")) %>%
gather(key = item, value = value, -ts.IDnum, -wave) %>%
group_by(item) %>% mutate(n = sum(!is.na(value))) %>%
filter((wave == "1" & n > 200) | (wave == "2" & n > 175)) %>%
select(-n) %>% rename(SID = ts.IDnum) %>%
mutate(SID = ifelse(as.numeric(SID) < 10000, as.numeric(SID) + 10000, SID)) %>%
spread(key = item, value = value)
target.depression <- target.ratings %>%
select(SID, wave, contains("CESD")) %>%
mutate_at(vars(ts.CESD01:ts.CESD10), funs(recode(., `1` = 0, `2` = 1, `3` = 2, `4` = 3))) %>%
mutate_at(vars(ts.CESD06, ts.CESD03), funs(recode(., `0` = 3, `1` = 2, `2` = 1, `3` = 0))) %>%
gather(key = item, value = rating, ts.CESD01:ts.CESD10) %>%
group_by(SID, wave) %>%
summarize(depression = sum(rating, na.rm = T)) %>%
arrange(desc(depression)) %>%
# mutate(wave = recode(wave, `4` = 2, `1` = 1)) %>%
spread(key = wave, value = depression) %>%
filter(!is.na(`1`) & !is.na(`2`)) %>%
gather(key = wave, value = depression, -SID) %>%
group_by(SID) %>%
mutate(change = sign(depression[wave == 2] - depression[wave == 1])) %>%
ungroup()
BFI_items <- paste("ts.", "BFI", c(paste("0", 1:9, sep = ""), 10:44), sep = "")
BFI_key <- c(paste(rep(c("E", "A", "C", "N", "O"), times = 8),
paste("0", rep(1:8, each = 5), sep = ""), sep = "_"),
"O_09", "A_09", "C_09", "O_10")
keys <- list(Extraversion = c(1, -6, 11, 16, -21, 26, -31, 36),
Agreeableness = c(-2, 7, -12, 17, 22, -27, 32, -37, 42),
Conscientiousness = c(3, -8, 13, -18, -23, 28, 33, 38, -43),
Neuroticism = c(4, -9, 14, 19, -24, 29, -34, 39),
Openness = c(5, 10, 15, 20, 25, 30, -35, 40, -41, 44))
BFI <- target.ratings %>% select(SID, wave, one_of(BFI_items)) %>%
mutate_at(vars(-wave), funs(as.numeric)) %>%
setNames(c("SID", "wave", BFI_key))
BFI[,47:51] <- scoreItems(keys, BFI[,3:46], min = 1, max = 15)$scores
colnames(BFI)[47:51] <- names(keys)
stab_cors <- ip_cors %>%
left_join(target.ratings) %>%
left_join(BFI %>% select(SID, wave, Extraversion:Openness)) %>%
left_join(esm.composites %>% ungroup() %>% mutate(SID = as.numeric(SID))) %>%
left_join(target.depression) %>%
mutate_at(vars(ts.ACT01:ts.WT02), funs(as.numeric)) %>%
gather(key = outcome, value = value, ts.ACT01:change) %>%
group_by(wave, lambda_scale, outcome, type) %>%
summarize(r = cor(cors, value, use = "pairwise")) %>%
filter(!is.na(r)) %>%
unite(comb, type, wave) %>%
spread(key = comb, value = r) %>%
filter(!is.na(Contemporaneous_2))
outcomes <-
tribble(
~oldName, ~newName, ~prettyName,
"ts.NQ02", "intelligent", "Intelligence",
"ts.NQ15", "compassionate", "Compassion",
"ts.NQ24", "dominant", "Dominance",
"ts.NQ33", "lonely", "Loneliness",
"ts.VQ16", "giveBack", "Enjoys Giving Back",
"ts.AGQ09", "probWPartying", "Partying Causes Life Problems",
"ts.ACT22", "talkRelat", "Talks About Relationships",
"ts.LE09", "winAward", "Won An Award",
"A.esm", "A.esm", "State Agreeableness",
"E.esm", "E.esm", "State Extraversion",
"C.esm", "C.esm", "State Conscientiousness",
"N.esm", "N.esm", "State Neuroticism",
"Agreeableness", "Agreeableness", "Trait Agreeableness",
"Extraversion", "Extraversion", "Trait Extraversion",
"Conscientiousness", "Conscientiousness", "Trait Conscientiousness",
"Neuroticism", "Neuroticism", "Trait Neuroticism",
"Openness", "Openness", "Trait Openness"
)
stab_cors %>% ungroup() %>%
filter(outcome %in% outcomes$oldName) %>%
mutate(#type = ifelse(grepl(".esm", outcome) == T, "ESM", "Trait"),
outcome = mapvalues(outcome, outcomes$oldName, outcomes$prettyName)) %>%
arrange(outcome) %>%
# select(-type) %>%
mutate_at(vars(Contemporaneous_1:Lagged_2), funs(round(.,2))) %>%
kable(., "html", booktabs = T, digits = 2,
caption = "Correlates of Measures of Ipsative Consistency",
col.names = c("Outcome", "W1", "W2", "W1", "W2"),
align = c("l", "r", "r", "r", "r")) %>%
add_header_above(c("Outcome" = 1, "Contemporaneous" = 2, "Lagged" = 2))