dplyr
tidyr
purrr
|>
or |>
)dplyr
: select()
and filter()
select()
select()
helper functions.starts_with()
ends_with()
contains()
matches()
num_range()
one_of()
all_of()
C1 C2 C3 C4 C5
61617 2 3 3 4 4
61618 5 4 4 3 4
61620 4 5 4 2 5
61621 4 4 3 5 5
61622 4 4 5 3 2
61623 6 6 6 1 3
61624 5 4 4 2 3
61629 3 2 4 2 4
61630 6 6 3 4 5
61633 6 5 6 2 1
61634 4 3 5 3 2
61636 5 4 5 4 5
61637 5 4 3 2 2
61639 4 4 4 2 1
61640 5 5 5 2 2
61643 5 5 5 3 5
61650 4 4 4 4 4
61651 5 5 5 4 3
61653 5 4 5 4 6
61654 1 1 1 5 6
61656 4 6 5 5 4
61659 5 4 4 2 3
61661 4 3 2 4 5
61664 3 5 6 3 6
61667 5 5 4 1 1
61668 5 2 5 1 1
61669 6 5 6 1 1
61670 4 5 4 3 4
61672 5 4 5 2 5
61673 5 5 3 5 4
61678 5 5 5 4 3
61679 5 5 5 2 4
61682 1 5 6 4 6
61683 4 6 4 2 4
61684 4 3 3 3 4
61685 2 2 4 3 4
61686 5 6 3 1 5
61687 6 5 6 3 4
61688 6 6 6 1 1
61691 6 5 5 2 2
61692 4 4 4 3 4
61693 5 2 5 2 4
61696 4 5 4 3 3
61698 5 3 3 4 5
61700 5 4 5 3 4
61701 5 2 1 2 1
61702 4 4 3 4 5
61703 3 2 3 4 6
61713 3 6 3 1 3
61715 5 5 4 1 2
61716 4 3 1 4 2
61723 6 6 6 6 2
61724 5 5 3 2 5
61725 5 6 2 5 2
61728 6 5 5 2 2
61730 5 5 4 4 5
61731 5 5 5 5 1
61732 5 4 5 2 4
61740 6 6 6 1 4
61742 6 4 4 2 2
61748 5 3 2 4 6
61749 5 5 4 3 4
61754 NA 6 6 2 3
61756 6 5 5 2 2
61757 4 6 6 1 4
61759 5 4 5 2 1
61761 1 2 2 2 6
61762 4 2 2 4 5
61763 5 5 4 2 2
61764 6 5 6 1 4
61771 4 6 6 1 2
61772 2 4 4 1 1
61773 5 4 6 2 4
61775 5 5 5 1 2
61776 5 5 5 1 1
61777 5 4 6 3 2
61778 5 4 5 1 2
61780 5 5 6 3 4
61782 2 4 2 5 1
61783 4 2 3 5 4
61784 6 5 4 4 3
61788 6 6 5 1 6
61789 3 3 4 4 5
61793 5 6 5 1 1
61794 4 5 5 2 3
61797 2 5 4 4 3
61798 4 4 5 2 2
61801 4 5 4 4 5
61808 4 4 5 2 4
61812 3 3 NA 3 3
61813 5 2 4 1 2
61816 5 4 5 3 4
61818 2 2 3 4 4
61819 6 6 5 1 1
61821 4 5 6 3 1
61822 5 6 4 1 4
61825 2 1 2 6 6
61826 6 4 4 1 1
61829 4 5 6 2 6
61831 4 2 5 3 5
61834 4 3 4 3 5
61835 4 3 4 4 2
61838 6 6 4 1 5
61839 2 1 2 4 6
61840 6 4 5 2 1
61841 5 3 4 6 5
61847 6 NA 6 1 1
61848 3 6 3 3 4
61851 5 4 4 4 6
61852 3 5 2 3 4
61854 4 4 5 3 4
61856 5 5 5 1 5
61857 5 3 5 1 2
61861 6 6 5 1 6
61862 5 4 5 2 2
61865 4 1 2 6 6
61868 5 6 4 1 4
61873 2 2 2 3 5
61874 5 4 5 2 3
61880 6 5 4 2 6
61886 4 6 5 5 2
61888 4 5 5 5 5
61889 5 5 6 1 1
61890 5 5 5 3 6
61891 5 5 4 6 6
61895 5 5 5 2 6
61896 5 4 5 3 2
61900 5 4 5 3 5
61901 2 3 4 5 6
61907 5 3 4 2 5
61908 4 4 4 4 5
61909 4 4 5 3 5
61911 6 5 5 2 3
61913 4 4 4 3 6
61915 6 6 3 6 5
61918 6 1 3 4 5
61921 1 1 3 1 1
61922 6 6 4 1 1
61923 5 5 4 1 4
61925 2 3 2 5 5
61926 3 3 3 2 6
61928 4 4 6 4 2
61932 6 5 4 2 2
61935 3 2 4 2 3
61936 3 5 3 3 6
61939 6 4 4 2 4
61944 6 6 6 1 5
61945 4 4 5 3 5
61949 4 4 6 4 5
61952 5 5 5 2 2
61953 5 2 2 5 6
61954 6 5 3 1 1
61957 4 4 2 5 4
61958 5 4 4 1 1
61965 5 5 6 2 1
61967 4 5 4 2 4
61968 5 3 4 4 4
61969 3 1 4 4 5
61971 3 5 4 4 5
61972 5 6 5 2 1
61973 5 4 5 1 1
61974 5 3 2 3 4
61975 2 3 2 4 5
61976 2 5 6 5 2
61978 5 5 5 2 2
61979 1 1 3 4 5
61983 4 6 4 1 2
61986 4 2 4 5 5
61987 5 6 4 2 2
61989 6 6 5 1 4
61990 3 3 5 3 6
61992 5 6 6 4 2
61993 4 4 4 4 5
61994 5 4 5 3 4
61999 5 5 5 2 1
62001 6 4 6 5 6
62003 4 5 3 3 4
62004 6 6 6 1 3
62005 4 3 5 4 4
62007 3 2 2 4 1
62009 5 2 4 4 5
62011 5 4 5 2 4
62013 3 3 4 4 4
62014 4 3 3 4 5
62015 5 5 4 3 2
62022 3 5 1 1 6
62023 4 4 4 4 4
62024 6 6 6 1 1
62025 5 5 5 1 2
62026 5 5 5 1 2
62029 3 1 1 3 2
62031 4 4 5 2 5
62032 4 5 4 2 5
62033 4 4 4 4 5
62034 5 5 5 2 4
62038 1 3 2 2 5
62039 5 3 3 3 4
62041 2 4 4 3 2
62042 2 4 3 4 6
62043 3 2 5 2 1
62044 5 6 5 1 2
62047 2 2 6 2 3
62048 4 4 4 3 4
62051 5 6 4 1 2
62052 5 4 4 3 4
62054 4 5 5 1 1
62055 2 4 2 2 4
62056 6 4 4 1 1
62059 3 3 3 4 4
62060 1 2 2 1 5
62063 6 2 5 2 2
62064 4 5 4 5 6
62067 5 4 NA 4 4
62070 3 3 3 4 6
62073 5 5 5 1 3
62075 5 4 4 2 2
62077 6 5 4 1 2
62079 5 1 3 2 1
62082 6 6 6 1 6
62084 6 2 2 4 5
62090 5 5 5 4 3
62092 6 6 1 1 1
62094 5 5 5 3 3
62099 5 3 4 3 5
62101 2 5 5 2 2
62102 1 5 6 3 2
62103 4 3 4 3 3
62105 6 5 6 2 4
62106 5 3 4 1 5
62107 5 5 4 2 1
62111 1 4 6 2 2
62115 5 3 3 2 4
62118 5 6 4 1 1
62119 5 4 6 3 3
62120 6 5 5 1 1
62121 3 3 4 5 4
62124 5 5 2 3 3
62128 4 3 4 5 6
62130 5 5 5 2 4
62132 5 6 5 2 1
62133 5 5 6 1 1
62136 4 5 4 2 4
62137 5 4 5 2 4
62142 5 4 5 1 2
62144 5 5 5 2 2
62147 4 3 3 3 5
62151 2 1 2 5 6
62156 5 2 5 2 3
62160 5 4 4 1 5
62161 4 2 4 4 4
62162 4 4 6 3 3
62163 6 5 5 2 2
62164 5 6 5 1 1
62165 6 6 6 1 1
62166 5 4 5 2 2
62168 4 4 4 2 2
62170 5 4 6 1 2
62171 3 3 5 4 4
62173 6 4 4 1 5
62176 4 5 3 5 4
62179 6 5 2 6 6
62180 6 5 5 1 3
62181 5 5 6 6 1
62182 6 5 5 1 1
62183 6 4 4 2 6
62189 5 6 5 2 1
62192 4 4 4 2 3
62197 5 4 5 1 1
62198 5 6 5 2 5
62199 4 4 5 4 5
62201 5 5 3 4 6
62202 4 5 5 3 3
62203 6 5 6 1 3
62204 5 6 6 5 1
62205 4 5 4 2 4
62206 4 5 6 3 1
62208 6 5 5 1 2
62209 5 4 3 2 4
62212 4 4 5 2 5
62213 3 3 5 3 5
62214 4 4 3 4 5
62215 5 4 5 1 1
62216 3 2 4 4 6
62219 4 5 4 3 4
62220 4 4 5 5 4
62224 5 4 5 2 1
62225 3 5 5 2 1
62226 5 3 5 2 3
62227 6 4 4 3 4
62228 5 4 6 2 2
62231 2 4 5 5 5
62233 5 5 5 2 1
62237 4 4 5 4 4
62239 4 4 5 4 4
62240 5 3 3 4 5
62242 4 5 4 3 5
62244 5 6 6 5 6
62245 3 2 2 4 6
62246 3 5 6 2 1
62252 4 4 4 4 3
62259 5 6 2 1 5
62260 4 4 4 2 2
62261 5 2 6 5 5
62263 4 3 5 3 4
62264 5 5 4 1 1
62265 5 5 4 2 4
62266 5 4 3 2 3
62267 5 6 6 2 1
62272 6 6 5 1 2
62276 4 5 5 2 3
62278 3 5 3 2 2
62279 6 5 5 1 2
62280 4 4 4 1 2
62281 5 4 6 1 2
62282 6 5 5 4 6
62287 5 5 5 2 1
62288 2 1 5 6 6
62289 4 4 4 2 2
62290 5 3 4 4 4
62293 4 5 5 1 2
62295 6 6 6 1 2
62296 4 5 4 2 2
62298 5 5 6 2 5
62299 5 5 5 5 5
62300 4 4 3 4 4
62301 5 5 5 2 4
62303 5 5 6 1 2
62305 4 4 3 3 4
62307 6 6 2 6 6
62312 5 5 4 3 5
62313 5 5 3 4 5
62316 4 6 5 1 2
62317 4 4 5 2 3
62325 5 6 4 1 1
62327 4 6 6 2 5
62328 3 1 5 2 5
62330 3 5 5 2 1
62333 6 6 6 1 1
62335 3 3 4 4 2
62336 6 5 2 1 5
62339 3 2 5 4 5
62342 4 1 2 6 3
62343 5 4 4 6 5
62344 5 6 4 2 4
62345 4 4 4 3 4
62346 5 4 5 3 3
62347 4 3 3 5 5
62348 4 5 6 4 3
62349 6 6 5 1 3
62350 4 4 6 4 2
62351 6 4 6 1 4
62352 5 5 5 1 1
62353 2 4 4 4 4
62354 4 4 5 3 2
62358 3 3 5 3 4
62359 5 5 5 2 4
62360 4 4 3 4 6
62362 5 4 5 4 5
62363 4 5 2 4 4
62366 5 6 5 1 3
62367 6 4 5 1 2
62368 4 1 2 5 6
62369 2 5 5 1 2
62370 4 5 2 3 6
62371 3 2 4 3 6
62375 5 6 6 1 2
62376 4 3 3 3 4
62377 5 5 5 5 4
62380 4 1 5 6 6
62382 3 6 2 5 5
62384 5 5 5 3 4
62387 5 5 4 2 4
62390 6 5 4 1 1
62391 5 5 5 1 4
62394 5 4 3 1 4
62397 6 6 6 1 1
62401 5 5 4 1 1
62408 5 4 4 2 5
62412 3 5 3 1 1
62416 6 5 5 3 2
62419 4 5 6 NA 1
62421 5 5 4 2 3
62423 5 6 5 2 3
62426 5 4 5 4 4
62433 5 6 2 2 4
62434 6 5 5 1 1
62435 5 5 5 2 2
62438 4 4 4 NA 3
62440 3 4 5 5 6
62443 5 5 4 1 2
62444 2 3 3 4 3
62447 5 5 5 1 5
62448 5 5 5 4 2
62450 6 5 3 3 4
62453 4 5 4 2 3
62454 3 4 3 4 4
62457 5 3 4 3 3
62462 6 4 4 1 1
62463 5 2 5 3 2
62464 5 4 4 4 4
62467 3 2 2 3 2
62468 4 2 2 5 4
62469 5 5 6 1 1
62470 5 4 2 2 4
62474 2 6 6 1 1
62476 4 2 4 4 5
62479 5 6 5 1 1
62480 5 5 4 2 4
62481 5 5 6 1 2
62486 5 3 4 1 1
62489 4 4 5 2 5
62491 5 2 5 4 3
62493 2 3 2 3 4
62494 6 5 5 1 1
62496 5 2 4 1 5
62497 5 3 2 3 5
62498 1 5 6 4 1
62499 5 4 5 2 3
62500 5 6 5 1 3
62502 1 5 6 1 1
62505 5 6 4 3 4
62508 5 6 6 1 2
62509 6 5 6 2 2
62512 6 6 5 NA 2
62514 6 6 5 1 2
62518 6 6 5 1 1
62520 4 5 4 1 1
62522 6 5 4 2 3
62526 5 4 1 3 1
62527 2 3 2 3 5
62528 5 6 5 1 3
62529 5 6 5 1 3
62530 5 6 5 1 3
62531 5 6 5 1 3
62532 5 6 4 2 4
62533 5 6 4 2 4
62535 5 6 4 2 4
62537 2 2 2 4 5
62538 6 6 6 1 1
62541 6 5 6 4 4
62542 6 5 6 1 3
62543 4 5 5 1 NA
62545 2 5 2 4 3
62546 4 4 4 2 4
62547 6 5 6 5 4
62548 4 3 5 1 2
62550 4 4 4 2 4
62551 4 4 3 6 6
62552 6 6 6 1 1
62553 6 6 6 1 1
62555 3 4 4 5 5
62556 5 5 4 3 3
62557 5 5 5 1 2
62559 5 5 5 4 3
62561 6 4 5 1 1
62562 3 5 5 1 2
62565 1 6 6 1 1
62567 6 6 4 1 5
62570 3 4 2 5 5
62573 6 6 6 1 6
62574 4 3 3 2 4
62577 2 1 2 5 4
62578 5 5 6 1 3
62582 5 3 3 2 2
62589 5 4 3 2 2
62590 5 4 4 1 4
62594 6 5 6 2 3
62597 6 2 4 2 5
62599 6 1 5 3 1
62604 6 5 6 1 2
62605 5 5 3 4 1
62606 5 5 3 1 1
62610 5 6 5 1 1
62611 4 3 4 3 4
62612 4 2 4 4 2
62613 3 1 2 4 2
62615 3 1 4 5 2
62617 6 6 6 1 1
62618 4 3 4 5 4
62622 6 6 5 1 4
62623 5 4 2 1 2
62625 6 5 5 1 2
62627 5 5 5 2 4
62635 4 4 NA 4 5
62638 6 3 5 1 2
62640 6 5 5 5 1
62642 6 5 5 3 3
62643 3 4 2 2 2
62644 5 6 5 1 2
62645 5 5 5 1 3
62646 3 4 6 5 2
62647 5 5 5 2 2
62648 1 4 6 4 NA
62650 6 6 5 1 1
62652 4 3 3 1 1
62653 4 6 5 2 3
62654 5 6 6 1 2
62657 6 3 5 2 1
62662 5 4 4 5 5
62664 6 5 5 1 2
62665 4 5 3 1 1
62667 5 6 5 1 1
62668 1 6 5 3 4
62669 5 4 6 2 4
62670 5 5 5 2 2
62673 5 5 5 NA 2
62675 6 6 4 1 2
62677 1 4 4 4 1
62679 5 4 4 1 2
62681 5 4 4 1 2
62682 3 6 3 3 1
62683 6 5 6 1 1
62684 5 5 5 1 2
62685 6 2 5 1 2
62686 6 5 3 2 2
62687 2 6 5 3 2
62688 6 6 5 1 2
62690 4 6 5 4 1
62692 6 6 5 1 1
62694 6 6 5 1 1
62698 4 3 4 4 3
62700 4 4 6 3 3
62703 4 3 5 2 3
62706 4 5 6 1 1
62707 3 5 4 2 2
62708 5 6 6 1 1
62710 5 4 4 3 4
62712 6 5 5 1 3
62715 5 5 5 2 4
62716 3 1 1 3 6
62717 5 4 5 4 2
62718 5 4 3 3 4
62719 5 2 6 1 1
62720 1 5 2 1 2
62722 5 4 5 2 5
62726 2 5 4 2 1
62728 5 5 4 2 5
62729 3 2 3 4 4
62731 5 2 2 4 2
62740 5 4 3 2 4
62741 5 4 5 2 1
62744 5 5 5 3 2
62745 2 5 6 4 6
62749 2 5 6 1 2
62750 5 2 5 1 2
62751 4 4 5 4 5
62757 5 5 5 2 2
62758 2 2 4 2 5
62761 6 5 6 1 2
62764 4 5 5 1 2
62765 1 4 6 1 1
62766 5 3 3 3 5
62767 1 1 2 4 5
62768 6 6 5 1 2
62770 2 5 5 2 2
62772 4 5 4 4 4
62776 2 2 4 4 4
62778 NA 5 5 1 1
62779 3 5 4 2 4
62780 6 6 6 1 2
62781 6 5 4 2 1
62783 5 5 5 5 5
62785 5 6 5 1 4
62786 6 6 5 1 4
62787 5 3 1 2 5
62788 6 6 5 2 3
62789 4 4 3 5 2
62790 6 5 6 1 1
62792 4 3 4 4 3
62795 5 4 1 5 5
62796 2 4 4 6 5
62797 3 4 1 1 4
62800 3 5 3 1 1
62801 5 6 5 1 1
62803 4 4 4 4 2
62804 6 3 3 2 4
62805 4 5 5 2 4
62809 NA 3 2 2 3
62810 6 6 6 1 1
62816 6 5 6 1 6
62817 3 5 6 5 3
62819 3 4 2 2 5
62821 6 5 6 1 2
62822 4 4 4 3 2
62825 4 2 4 4 5
62826 4 5 4 3 4
62827 4 6 6 4 4
62828 6 6 5 4 2
62831 6 5 3 5 3
62832 5 5 5 3 3
62834 4 4 6 2 2
62835 4 4 3 NA 4
62837 1 5 6 1 4
62839 5 5 5 2 1
62840 4 4 4 1 2
62844 5 5 5 2 2
62846 4 5 4 2 4
62847 6 6 5 1 1
62849 4 6 5 1 2
62851 6 4 6 4 2
62853 5 6 6 2 4
62856 4 5 5 1 2
62857 4 4 3 4 4
62858 5 5 5 2 2
62861 4 4 2 4 4
62863 3 2 5 2 NA
62864 5 1 4 2 1
62867 4 3 4 4 4
62869 4 4 4 2 5
62870 2 NA 6 1 NA
62872 2 5 6 1 NA
62874 5 6 6 1 1
62876 4 2 3 NA 3
62877 5 4 5 1 4
62878 2 6 4 1 3
62879 6 6 5 2 1
62881 6 5 6 1 1
62883 4 4 4 2 4
62887 6 6 5 1 1
62889 4 2 5 4 3
62890 5 4 5 4 5
62891 6 6 6 1 2
62897 4 5 5 1 1
62898 6 6 6 1 1
62899 5 6 5 1 1
62901 4 3 5 4 3
62903 5 5 2 4 2
62908 4 3 3 5 5
62910 5 5 5 2 2
62911 5 4 4 1 2
62916 2 1 4 4 1
62918 6 4 4 2 2
62920 5 5 5 2 3
62922 5 5 5 2 4
62926 5 5 2 4 5
62931 5 5 6 1 2
62933 1 6 4 1 1
62934 4 4 4 3 4
62936 3 1 2 2 2
62938 6 5 4 2 2
62939 4 4 4 3 3
62941 4 4 4 3 3
62942 5 6 4 2 2
62948 4 3 1 3 2
62949 6 4 4 2 3
62950 6 5 4 1 1
62951 4 2 4 2 4
62953 6 5 5 1 2
62954 5 5 1 1 6
62957 6 5 4 1 2
62962 4 2 4 1 1
62965 5 5 4 4 6
62968 2 4 4 3 4
62969 6 5 5 1 5
62971 5 5 5 2 2
62974 5 5 4 1 1
62976 6 5 5 3 1
62983 5 3 4 2 3
62984 4 2 4 5 3
62989 3 5 5 1 1
62990 6 6 6 1 1
62991 5 5 5 3 1
62994 5 5 3 3 5
62995 2 4 2 4 4
62996 4 5 5 2 1
62997 2 1 5 2 6
63004 4 5 5 2 2
63007 4 6 6 3 5
63013 3 4 3 4 5
63017 6 4 4 2 4
63018 5 5 5 2 4
63021 5 4 5 3 4
63023 6 6 5 2 2
63026 6 6 6 1 1
63027 1 2 3 3 1
63030 6 NA NA NA 2
63034 4 6 5 3 3
63035 5 5 5 1 2
63036 4 3 4 1 1
63037 6 6 4 4 4
63038 5 5 4 2 4
63039 6 5 4 2 5
63040 4 4 3 NA 4
63042 4 4 3 4 3
63047 4 4 2 3 5
63048 5 5 2 4 5
63049 6 6 6 1 1
63050 5 4 3 NA 4
63051 NA 5 2 1 2
63054 4 5 5 2 5
63055 5 6 6 2 1
63059 6 6 6 1 1
63062 5 3 4 3 5
63063 3 4 3 4 4
63069 6 6 5 3 3
63070 6 4 5 2 4
63071 6 5 6 1 1
63073 6 4 4 2 5
63075 6 5 5 4 2
63077 5 5 5 2 1
63081 4 6 4 1 1
63083 3 4 4 3 3
63084 5 4 5 2 1
63089 5 6 3 1 6
63090 5 5 4 2 3
63092 3 5 5 4 2
63094 4 3 3 3 5
63096 4 5 5 1 2
63097 5 6 6 2 1
63099 3 5 5 2 2
63100 5 6 3 2 4
63102 5 5 5 1 4
63103 5 6 6 1 2
63104 3 3 3 3 4
63108 3 2 5 4 6
63109 5 5 5 1 1
63112 3 2 3 4 4
63115 5 5 5 5 4
63116 4 5 5 2 1
63120 5 4 6 1 4
63121 6 6 6 1 5
63122 3 4 3 3 4
63123 5 6 1 2 1
63125 5 5 5 2 2
63127 5 5 5 1 2
63128 5 5 6 2 2
63130 5 4 5 2 6
63131 5 6 5 NA 1
63135 4 4 5 3 4
63136 4 6 5 2 4
63139 5 5 6 2 2
63141 1 6 6 1 1
63142 3 4 5 2 4
63146 4 2 2 2 4
63147 6 5 6 1 1
63152 5 6 4 4 4
63154 5 5 6 2 3
63155 5 5 6 2 4
63158 6 5 2 1 5
63161 NA 3 3 1 1
63163 6 6 6 1 2
63165 3 4 3 2 2
63171 4 4 4 3 5
63172 6 5 5 1 1
63173 4 4 6 2 4
63176 4 5 5 2 2
63181 3 5 4 2 3
63182 4 5 4 2 2
63183 3 3 2 3 4
63187 3 5 5 1 6
63192 4 3 4 3 4
63193 5 1 2 2 4
63194 4 4 4 4 4
63197 5 5 4 3 4
63200 3 4 6 2 1
63201 5 4 4 2 2
63203 4 2 2 4 3
63209 6 6 2 1 1
63215 5 5 2 3 5
63222 4 5 3 3 5
63223 3 2 2 5 6
63225 6 6 6 1 4
63227 4 4 4 2 4
63228 3 4 3 4 4
63233 5 5 3 2 3
63237 5 5 5 3 4
63238 5 3 2 2 4
63239 6 5 6 2 1
63242 4 4 5 2 2
63245 5 6 6 4 3
63246 5 3 5 1 1
63250 5 4 4 2 5
63252 5 5 5 2 2
63253 2 2 4 3 4
63258 4 5 5 2 3
63261 4 6 5 2 2
63264 2 2 4 5 6
63266 5 5 4 2 2
63271 3 3 3 3 4
63277 4 4 3 3 5
63278 3 3 3 2 3
63280 4 4 6 3 5
63281 5 5 5 3 3
63286 4 4 4 4 5
63287 5 5 6 1 1
63289 1 5 5 6 6
63292 5 4 5 3 3
63293 4 4 4 2 2
63294 4 3 2 4 4
63301 3 5 5 2 2
63302 5 5 3 2 4
63307 5 4 5 4 4
63309 3 5 5 4 1
63313 5 4 4 4 5
63317 4 4 4 2 3
63320 5 6 5 1 1
63321 4 4 3 3 3
63322 6 4 4 2 5
63324 1 1 1 6 6
63326 3 3 4 2 3
63328 6 5 6 1 1
63330 4 4 4 5 5
63331 4 2 3 2 2
63332 6 6 4 1 1
63334 4 5 5 6 4
63335 5 4 4 3 3
63337 6 6 6 1 1
63338 4 5 4 4 4
63339 6 5 5 1 2
63340 6 6 5 1 3
63342 5 5 4 3 2
63346 5 5 6 1 4
63351 5 5 4 2 2
63352 4 2 4 3 5
63358 4 5 2 4 5
63361 3 5 4 2 2
63364 3 3 4 3 4
63369 4 5 5 5 6
63370 4 4 5 1 2
63371 3 4 4 3 5
63372 4 1 2 5 5
63375 3 3 4 4 4
63376 4 6 5 2 2
63378 5 5 5 2 NA
63379 6 5 5 2 4
63382 5 5 5 2 2
63383 5 4 4 2 3
63386 4 4 5 1 4
63389 5 6 6 1 2
63395 5 NA 5 1 1
63399 5 2 5 2 4
63400 4 5 6 NA 1
63402 4 4 4 5 6
63404 5 6 5 2 4
63406 6 3 4 3 5
63408 4 4 6 3 3
63412 5 5 6 2 1
63413 6 6 5 1 1
63414 5 5 4 5 6
63420 5 3 5 2 5
63421 5 2 5 2 2
63427 5 4 5 2 2
63428 6 6 6 1 2
63430 6 6 6 1 1
63431 4 3 4 4 4
63432 5 5 5 2 4
63435 2 2 2 4 6
63437 2 1 1 4 6
63438 4 4 5 3 3
63439 4 4 4 4 4
63441 3 3 5 5 5
63442 4 4 5 3 NA
63444 4 4 5 3 5
63445 4 6 4 4 5
63446 2 3 2 4 5
63448 6 4 6 1 2
63450 5 5 4 3 4
63452 6 5 4 1 2
63454 4 4 4 2 4
63455 5 6 6 2 4
63458 2 2 4 3 5
63459 6 6 2 2 4
63463 3 1 2 4 6
63464 6 5 5 1 2
63465 4 1 5 4 6
63466 6 5 5 1 1
63467 6 5 1 1 1
63468 5 5 4 2 5
63470 6 6 6 4 1
63472 5 5 5 2 4
63473 3 2 5 4 5
63476 5 5 6 2 3
63479 3 4 5 1 1
63480 5 6 5 2 4
63481 4 4 2 2 4
63485 2 3 5 4 5
63486 4 6 4 2 3
63488 5 5 2 2 2
63491 6 6 6 1 1
63493 3 3 2 3 6
63494 5 5 4 3 5
63496 3 5 5 2 1
63498 4 3 3 2 3
63499 4 2 4 4 5
63501 2 5 6 1 1
63502 3 4 4 4 1
63504 6 2 5 2 1
63505 6 5 5 1 6
63509 5 5 5 3 5
63510 6 6 6 1 1
63512 5 5 4 4 6
63513 3 2 3 4 5
63516 6 6 6 2 5
63518 5 6 1 6 6
63521 3 6 3 2 2
63525 5 4 4 4 2
63528 1 2 1 2 4
63530 5 6 5 1 2
63531 5 2 4 1 3
63533 5 6 5 1 6
63534 4 4 4 3 5
63536 6 4 6 1 3
63538 5 5 5 1 4
63547 5 5 2 1 1
63549 5 6 4 NA 2
63551 4 3 4 4 6
63554 4 5 5 3 6
63555 5 4 5 3 5
63556 3 5 4 2 5
63557 5 5 6 3 4
63558 4 3 6 4 3
63559 5 5 6 1 1
63560 6 6 6 1 4
63562 3 4 4 5 6
63567 2 3 3 3 5
63575 4 4 3 4 5
63578 5 4 5 2 4
63579 6 6 5 1 3
63580 3 4 3 5 4
63581 5 5 5 1 3
63582 2 5 5 2 6
63583 6 6 3 1 1
63584 NA 4 4 3 5
63586 5 5 5 2 4
63587 5 5 4 4 2
63588 5 4 5 2 2
63589 3 3 4 6 4
63590 5 5 5 2 2
63591 2 2 2 2 6
63595 5 5 6 2 2
63596 6 5 5 2 2
63597 4 4 4 4 4
63602 6 6 6 1 1
63608 1 5 5 1 2
63609 3 2 1 5 6
63613 5 6 5 1 1
63616 4 3 3 3 2
63617 5 5 4 1 4
63618 6 5 6 2 2
63619 5 3 2 6 6
63621 4 5 5 4 5
63623 4 5 6 1 1
63625 6 4 5 1 1
63631 5 5 4 3 4
63636 6 5 6 3 6
63637 5 5 5 2 5
63638 4 4 3 4 6
63642 5 5 4 3 5
63644 3 5 5 5 5
63648 5 4 4 3 1
63649 4 5 4 4 3
63655 5 5 5 2 1
63657 6 5 5 5 6
63658 3 4 2 2 2
63659 4 3 4 3 4
63661 4 4 4 4 4
63668 6 6 5 1 1
63669 4 3 5 5 4
63670 5 5 3 3 4
63672 5 4 4 2 2
63675 5 4 5 2 4
63676 4 5 3 2 6
63677 6 4 2 1 6
63681 5 5 5 1 5
63682 3 2 3 2 4
63683 5 3 4 2 5
63687 3 4 3 5 6
63690 4 3 4 3 5
63692 5 2 4 2 3
63693 4 4 4 5 5
63696 3 2 2 4 4
63697 6 6 4 1 1
63699 5 4 3 3 1
63700 5 5 5 2 4
63701 6 6 6 1 3
63704 5 NA 5 1 2
63705 6 6 6 1 4
63706 5 4 4 NA 1
63707 3 4 2 3 4
63709 4 4 4 3 4
63711 5 3 2 4 4
63712 6 6 5 2 4
63713 6 6 5 1 1
63721 6 6 6 4 1
63723 2 5 5 1 2
63724 2 3 4 4 5
63726 5 5 5 2 5
63727 6 5 6 1 2
63728 3 2 5 4 4
63729 4 3 4 2 4
63732 2 3 4 2 2
63734 3 4 2 4 4
63735 5 2 4 2 3
63738 5 5 5 4 4
63739 6 6 6 1 NA
63742 6 6 1 1 6
63743 5 3 3 2 3
63744 3 5 4 2 5
63745 5 4 3 3 4
63746 5 2 5 3 5
63748 3 1 5 1 4
63750 6 4 4 2 4
63752 6 5 5 1 5
63760 4 3 3 2 3
63761 2 2 2 4 5
63762 1 1 1 6 6
63763 1 6 5 4 2
63766 5 4 5 1 1
63767 6 6 6 1 1
63768 5 4 5 2 3
63770 5 5 3 2 4
63773 6 6 5 1 4
63775 5 4 4 1 2
63776 5 6 NA 2 6
63778 5 3 6 1 5
63788 5 5 1 5 6
63789 4 5 5 1 2
63791 5 5 5 1 1
63792 4 3 2 2 3
63793 4 3 3 2 3
63794 6 6 4 1 1
63796 4 3 4 3 6
63798 6 6 5 1 4
63799 4 5 5 1 1
63801 5 5 4 2 3
63803 6 4 5 2 4
63807 3 3 3 2 6
63810 5 4 4 4 6
63811 6 6 6 1 3
63812 3 5 5 1 2
63815 4 5 6 2 1
63816 6 5 4 1 2
63817 6 6 6 1 1
63818 3 5 4 4 4
63820 5 6 5 2 4
63822 2 5 2 1 5
63823 4 4 2 3 4
63824 1 6 5 2 5
63825 4 2 5 3 5
63826 4 5 5 5 NA
63827 6 4 5 1 5
63828 5 5 3 3 6
63829 3 5 4 2 3
63834 5 5 4 2 5
63835 4 5 5 3 3
63837 5 4 3 1 1
63838 5 5 5 1 1
63839 4 6 6 6 4
63846 6 3 5 1 1
63847 5 5 5 2 3
63849 6 6 6 1 1
63851 5 5 6 2 4
63852 5 5 6 2 4
63853 5 5 5 2 5
63854 6 6 1 2 5
63855 6 5 6 1 2
63856 4 5 1 2 6
63862 2 5 2 3 5
63863 5 6 5 2 2
63866 4 2 4 3 4
63868 4 3 3 2 4
63871 6 6 6 1 1
63873 3 3 4 4 4
63875 6 5 6 1 3
63877 6 3 2 5 5
63879 4 3 5 2 1
63880 5 5 6 1 5
63881 5 4 5 5 5
63882 5 3 4 1 6
63883 6 2 4 1 2
63884 4 3 NA 2 4
63885 5 5 4 2 4
63887 5 5 4 4 4
63888 3 4 3 2 3
63890 4 2 2 2 2
63897 4 2 5 5 6
63898 2 5 2 5 2
63899 5 6 5 4 4
63900 5 4 6 2 2
63902 5 5 5 2 2
63907 6 5 5 2 5
63909 3 3 4 2 4
63911 5 5 5 1 5
63912 4 3 1 4 2
63913 6 5 5 1 1
63918 6 5 5 1 2
63924 4 3 4 4 3
63925 4 4 4 2 3
63930 4 5 5 2 2
63931 5 5 4 2 5
63932 6 5 5 2 2
63934 5 5 6 1 1
63937 2 5 5 4 6
63939 5 4 4 4 4
63942 4 2 2 6 6
63946 2 4 2 4 5
63947 5 5 5 1 1
63948 4 3 1 5 5
63950 4 4 3 4 5
63952 4 1 5 3 6
63955 1 4 2 3 6
63956 6 6 5 3 2
63957 5 6 5 1 6
63958 5 4 4 2 5
63959 5 5 5 5 5
63961 5 6 4 2 6
63962 5 3 6 1 4
63963 5 4 5 5 6
63966 4 5 5 4 5
63967 5 5 6 1 1
63971 5 5 6 2 4
63977 6 5 4 2 4
63978 6 6 6 5 4
63979 6 6 2 5 5
63980 4 5 2 3 6
63982 6 5 5 3 3
63983 5 3 5 5 5
63984 6 5 5 1 4
63985 4 4 4 4 4
63987 5 5 4 4 3
63990 4 4 3 2 6
63991 3 NA NA NA 3
63993 5 2 3 3 4
63997 4 4 4 3 4
63999 4 2 4 4 4
64000 2 2 4 5 6
64001 6 6 5 1 5
64003 4 5 5 1 2
64005 4 2 6 2 5
64006 5 5 5 1 1
64010 4 5 4 4 4
64012 4 4 5 3 5
64014 5 3 5 2 2
64016 6 6 6 1 1
64017 3 6 6 1 1
64018 6 5 6 2 2
64020 6 2 6 1 2
64021 2 5 4 1 6
64024 5 6 5 1 1
64025 6 4 5 1 2
64028 3 2 4 NA 4
64029 5 6 5 5 NA
64030 4 1 3 3 4
64031 6 6 5 3 1
64032 4 3 3 4 5
64033 2 3 3 1 6
64036 4 5 5 2 2
64044 3 3 5 5 4
64046 4 4 4 3 3
64047 3 4 3 3 4
64049 2 1 6 2 6
64050 5 1 4 3 4
64051 5 5 6 NA 2
64053 6 5 5 1 1
64056 2 2 3 5 6
64057 4 4 4 5 3
64065 4 5 6 2 2
64066 4 1 5 3 2
64069 2 3 6 5 5
64072 6 6 6 1 2
64074 5 5 4 1 2
64075 6 5 6 1 4
64076 2 5 5 3 5
64078 4 4 2 2 5
64079 6 6 6 1 2
64086 4 2 2 5 5
64087 5 3 5 3 5
64089 5 1 2 5 5
64091 2 1 1 4 4
64092 5 5 5 3 3
64094 5 5 3 4 5
64097 3 5 4 2 2
64099 5 5 4 5 6
64100 4 6 4 2 4
64101 5 5 4 2 4
64102 4 4 4 2 2
64103 5 4 4 3 2
64108 5 5 4 1 4
64111 5 5 5 3 3
64113 1 4 5 1 4
64116 4 4 3 3 4
64119 2 2 3 5 6
64120 3 1 3 5 6
64122 6 6 6 1 1
64125 2 2 1 2 6
64128 4 3 3 4 4
64129 5 4 4 2 4
64132 3 4 5 4 5
64134 5 5 4 2 4
64136 5 4 5 2 4
64137 5 4 2 4 4
64138 3 4 2 4 4
64141 5 5 5 4 4
64142 4 4 4 3 4
64143 4 5 5 2 1
64144 2 2 4 3 4
64147 4 5 4 4 4
64148 6 6 4 2 4
64150 3 3 3 3 5
64151 5 6 5 1 3
64152 2 1 4 4 6
64154 6 6 6 1 4
64155 4 4 5 2 5
64156 4 4 5 2 2
64158 4 2 2 4 6
64163 6 5 6 1 4
64168 5 2 3 4 4
64169 6 6 6 2 1
64178 4 5 5 2 2
64179 6 4 2 2 4
64180 3 4 5 1 1
64185 5 4 4 3 5
64192 1 1 1 6 6
64193 4 3 3 3 5
64195 5 5 5 1 2
64200 4 4 5 2 3
64202 1 1 2 6 6
64204 2 4 5 5 2
64206 5 5 6 1 4
64212 2 3 5 5 5
64216 4 4 4 4 6
64217 5 3 2 4 4
64222 5 4 5 2 2
64226 4 2 2 4 6
64228 4 4 4 2 5
64231 1 5 5 1 1
64235 3 2 4 5 4
64236 4 2 5 5 5
64240 NA 5 5 1 1
64241 3 4 5 3 3
64242 5 4 5 1 2
64243 2 4 2 5 5
64244 6 5 5 1 3
64248 2 3 2 5 4
64250 6 6 6 1 6
64251 3 2 4 4 5
64254 4 5 4 2 1
64256 3 6 6 1 1
64261 4 NA 2 4 4
64263 5 3 5 4 4
64264 3 5 6 5 1
64266 6 1 6 1 2
64267 5 5 2 2 4
64274 5 5 5 1 4
64275 6 6 5 2 6
64279 5 5 4 2 2
64280 4 6 NA 1 1
64284 5 5 6 2 3
64286 5 4 5 2 2
64289 5 6 5 1 1
64290 NA 6 5 1 1
64295 5 5 4 2 6
64296 4 5 4 3 6
64297 4 2 3 2 3
64298 4 3 4 3 1
64299 5 5 6 2 2
64300 4 6 6 5 4
64303 5 3 4 3 4
64305 4 5 5 5 2
64308 6 5 4 1 5
64310 5 5 5 2 3
64311 3 4 4 3 4
64312 5 6 4 2 3
64315 6 5 3 3 1
64318 5 5 5 3 4
64320 5 4 5 2 3
64321 6 6 6 1 1
64322 6 2 4 1 1
64323 1 6 6 1 1
64324 4 5 4 5 5
64326 4 6 5 2 4
64327 3 4 5 4 4
64329 3 4 5 4 5
64332 5 3 5 2 3
64333 6 5 5 1 1
64334 4 3 4 3 3
64335 6 3 6 1 2
64338 5 4 5 3 4
64339 4 4 3 2 5
64340 6 5 6 1 3
64341 1 1 6 6 6
64342 4 4 5 4 3
64344 4 5 4 5 5
64345 5 5 5 1 2
64347 4 4 4 3 5
64349 5 5 4 1 2
64352 4 4 4 4 4
64356 4 6 5 2 1
64359 6 5 5 2 2
64363 5 4 2 2 4
64365 5 5 4 3 6
64367 4 5 3 2 2
64368 5 5 5 5 4
64370 5 3 3 3 3
64371 5 5 5 2 2
64372 3 3 3 5 5
64374 5 3 4 3 3
64375 3 2 4 4 6
64377 4 2 4 4 6
64378 5 5 5 2 5
64379 1 1 1 6 6
64382 5 3 4 4 6
64385 5 4 4 2 2
64389 3 6 6 1 1
64390 5 2 5 2 1
64392 6 5 5 1 2
64393 NA 5 2 3 6
64396 3 4 2 2 2
64399 2 2 4 3 5
64400 4 3 4 2 4
64401 6 4 4 2 3
64403 6 6 5 1 2
64413 6 6 6 1 1
64414 5 4 4 2 4
64417 5 6 5 1 1
64418 6 4 5 1 3
64421 5 4 4 2 4
64422 5 1 5 2 4
64424 5 4 3 4 3
64425 3 3 2 2 1
64426 5 5 5 2 4
64427 6 5 2 1 4
64429 5 5 5 1 2
64430 5 5 5 2 3
64431 3 1 3 4 5
64432 4 2 4 2 3
64435 5 5 5 1 2
64436 5 5 4 2 4
64437 5 6 5 2 2
64438 4 1 5 5 5
64439 6 6 4 1 3
64440 3 3 2 5 5
64446 2 4 4 5 6
64450 3 4 3 3 2
64453 5 6 4 4 2
64456 4 2 4 4 4
64458 2 6 1 5 6
64459 4 4 5 4 4
64460 2 5 4 3 4
64461 6 5 6 1 1
64462 5 NA NA 4 5
64463 4 5 6 4 1
64464 5 6 4 2 4
64466 4 4 5 2 2
64467 3 4 4 4 4
64468 5 5 4 2 2
64469 5 6 2 5 6
64471 6 5 6 2 5
64479 3 2 3 4 6
64481 6 4 6 1 1
64483 6 5 5 1 1
64484 5 2 4 1 4
64487 4 4 6 1 3
64488 5 2 6 2 1
64490 5 4 5 4 4
64491 5 5 5 2 2
64493 6 4 2 5 5
64495 5 5 6 1 1
64496 6 6 3 3 2
64499 6 6 3 2 2
64501 4 3 4 4 6
64507 4 4 5 3 5
64508 5 5 4 4 5
64510 5 5 6 1 1
64511 6 6 6 1 1
64512 6 6 6 2 4
64513 5 6 4 2 4
64514 4 6 4 2 2
64516 4 2 4 3 4
64518 6 5 5 1 2
64519 1 5 5 1 2
64520 6 6 6 1 1
64522 5 5 4 4 5
64525 6 2 2 5 6
64528 4 5 5 1 3
64530 5 4 4 2 2
64532 4 2 3 3 2
64537 6 5 4 1 1
64540 6 5 6 1 2
64541 2 2 2 4 4
64543 3 4 2 3 5
64544 4 2 4 2 4
64545 6 6 6 1 1
64546 5 5 5 3 4
64547 5 5 2 1 5
64548 4 5 4 3 6
64549 5 5 6 2 1
64552 2 2 3 3 5
64555 6 5 6 2 5
64556 6 5 5 2 4
64557 3 4 3 5 5
64562 2 2 4 4 5
64563 4 4 6 4 2
64564 6 5 3 2 3
64565 5 4 6 1 1
64567 5 6 5 4 5
64568 5 5 4 2 4
64571 5 3 4 2 5
64572 4 4 6 3 4
64573 4 3 5 4 5
64577 6 5 4 3 1
64579 3 4 1 4 5
64581 6 5 5 1 1
64583 2 3 3 1 4
64585 5 5 5 2 2
64586 4 4 5 3 4
64588 6 5 3 5 3
64591 6 6 5 2 5
64593 4 5 5 2 3
64595 3 4 4 3 4
64600 1 5 1 2 5
64603 6 4 4 2 5
64605 6 5 4 1 6
64606 3 4 2 4 5
64607 6 5 4 2 3
64612 4 5 4 3 4
64614 2 3 3 2 NA
64618 3 4 4 3 3
64620 2 5 5 2 5
64621 6 6 5 1 1
64622 2 6 6 4 4
64623 4 4 4 3 6
64626 5 5 4 3 4
64627 5 5 6 1 3
64630 4 6 6 1 1
64634 4 1 2 4 4
64636 5 5 6 1 1
64638 3 2 6 2 5
64639 4 4 6 2 5
64642 1 1 1 1 1
64648 6 6 5 1 2
64652 5 5 5 1 4
64656 6 6 4 3 4
64658 5 3 5 3 5
64660 5 6 6 1 1
64661 5 5 4 1 2
64664 5 5 6 1 4
64665 4 4 6 2 4
64668 3 5 4 3 5
64669 6 5 6 2 5
64670 5 5 4 2 4
64671 3 3 5 3 4
64673 6 6 4 2 6
64675 3 2 2 4 5
64679 5 4 5 2 3
64680 5 5 5 3 6
64682 5 4 4 2 1
64683 5 2 6 1 1
64685 6 6 6 1 1
64686 4 5 1 5 6
64688 5 3 5 2 4
64689 1 1 4 6 5
64693 4 2 5 5 5
64696 5 5 5 2 1
64697 5 5 6 2 1
64698 5 5 4 1 4
64702 6 6 4 1 2
64706 4 4 4 2 2
64707 5 4 2 3 5
64709 5 5 6 3 1
64712 3 5 3 5 6
64714 3 2 2 4 5
64715 4 4 5 5 5
64716 4 3 4 4 5
64718 2 5 2 2 6
64720 5 3 5 1 1
64724 1 6 6 1 1
64725 5 3 4 6 4
64727 4 5 5 5 5
64729 5 4 4 2 6
64730 5 5 5 1 4
64733 3 2 2 4 6
64735 5 3 4 3 4
64737 5 4 4 4 6
64738 5 2 4 5 5
64739 4 4 6 3 5
64742 5 4 5 5 5
64744 5 5 5 2 3
64747 4 3 4 2 2
64753 3 2 1 5 6
64754 3 4 2 2 2
64758 4 5 4 2 4
64759 5 6 5 2 2
64763 5 5 4 2 4
64768 6 6 5 4 1
64769 6 5 5 5 2
64770 5 6 5 1 3
64771 5 3 5 1 4
64772 4 3 3 3 5
64773 4 4 4 3 4
64774 5 3 5 4 5
64780 4 1 6 5 3
64804 4 5 5 1 2
64807 6 6 5 1 1
64810 3 2 1 2 1
64814 2 2 4 2 5
64815 5 3 5 3 4
64817 6 6 3 2 2
64819 4 4 4 2 4
64822 5 5 5 1 3
64824 5 5 2 2 2
64825 5 5 6 1 1
64826 6 5 4 3 4
64830 6 6 5 6 3
64831 6 6 5 6 3
64835 1 1 1 6 6
64838 5 5 5 2 4
64839 2 3 4 3 1
64842 5 6 1 3 6
64843 5 5 4 2 2
64844 6 2 1 4 6
64845 5 5 4 3 4
64846 5 4 3 2 4
64847 6 6 6 2 2
64849 3 3 4 4 4
64850 5 5 4 5 5
64852 5 5 6 2 1
64857 5 4 2 4 5
64861 5 4 2 2 6
64865 5 5 3 3 3
64866 6 4 5 1 2
64874 4 4 6 2 1
64876 6 5 3 1 5
64877 6 6 5 1 2
64880 1 2 1 5 6
64886 6 5 6 1 1
64887 5 5 4 2 5
64888 5 5 1 4 6
64890 4 3 5 3 2
64891 5 2 4 3 6
64894 3 5 2 2 5
64898 4 5 5 2 6
64902 2 1 4 4 3
64907 5 4 5 3 2
64912 4 3 2 4 5
64914 5 2 3 6 5
64915 5 5 3 2 4
64917 NA 5 5 3 4
64918 4 5 2 3 4
64919 6 6 6 1 6
64920 6 6 5 1 2
64921 2 3 3 4 4
64926 5 2 2 3 6
64931 5 6 4 2 4
64936 6 5 5 2 5
64937 5 6 4 3 2
64938 5 5 5 1 4
64939 3 2 2 3 6
64940 4 3 5 2 2
64944 4 6 6 5 4
64946 6 4 5 6 3
64949 6 6 5 2 1
64950 4 3 3 4 5
64952 4 5 4 2 5
64953 5 5 5 5 5
64954 6 5 5 2 5
64958 5 6 5 NA 6
64960 5 5 3 5 5
64961 5 4 5 2 4
64962 5 6 6 4 6
64963 6 5 4 1 1
64967 5 6 2 5 2
64968 5 6 6 5 6
64969 5 6 6 5 1
64970 5 6 3 5 1
64971 5 6 6 1 1
64975 5 4 6 1 1
64978 5 4 6 1 1
64979 5 4 6 1 1
64980 5 4 6 1 1
64981 5 4 6 1 1
64982 5 4 6 1 1
64984 5 4 5 4 3
64987 5 5 5 3 5
64990 5 6 5 4 4
64991 5 6 6 4 2
64992 4 4 5 3 3
64993 4 3 3 2 4
64996 6 6 4 1 1
64997 6 5 5 1 2
65017 5 5 4 2 3
65018 3 2 5 4 2
65020 5 5 5 2 5
65022 4 4 4 3 2
65025 5 5 5 1 1
65026 4 2 2 3 2
65027 4 4 4 2 5
65028 6 5 2 2 3
65033 4 3 2 2 5
65041 4 4 4 2 2
65042 5 5 5 5 1
65044 5 6 1 4 6
65047 5 5 5 3 2
65049 5 2 5 3 5
65050 6 6 5 2 1
65052 5 4 2 2 NA
65054 5 3 4 3 3
65056 5 5 5 5 4
65058 4 3 4 3 4
65059 4 4 5 2 3
65060 5 5 5 5 1
65061 5 5 5 2 5
65070 4 4 6 2 4
65071 1 6 6 4 5
65075 6 6 6 1 1
65078 6 5 6 1 6
65079 6 6 6 1 1
65080 6 6 5 1 1
65081 4 4 4 3 6
65082 5 5 4 2 3
65083 6 5 6 2 4
65084 5 4 4 4 4
65086 3 3 5 5 5
65087 6 6 3 1 1
65088 5 5 5 1 2
65091 5 4 3 3 4
65092 5 4 4 2 5
65096 4 4 4 2 2
65097 5 4 4 3 4
65099 4 4 2 5 5
65100 4 3 4 2 5
65101 4 3 3 3 3
65105 6 4 4 5 6
65108 5 5 6 4 2
65109 4 4 2 4 2
65111 6 5 5 2 4
65114 5 4 1 4 6
65117 5 4 4 4 4
65121 NA 6 5 5 4
65122 6 3 4 5 5
65124 6 6 6 2 1
65126 6 6 5 2 1
65129 5 5 6 6 5
65130 4 3 NA 6 6
65140 5 5 5 1 2
65142 3 2 2 5 6
65144 6 5 5 2 6
65147 6 5 5 1 3
65150 6 6 6 1 1
65151 3 2 2 4 6
65152 5 3 5 2 2
65156 5 3 5 2 2
65157 2 2 3 5 4
65162 5 5 5 2 3
65163 5 5 5 2 5
65164 4 2 4 5 2
65166 5 4 3 3 4
65168 1 NA NA NA 1
65169 4 5 4 2 2
65170 1 6 6 2 1
65172 4 3 4 3 3
65173 4 3 2 5 5
65174 5 4 6 2 4
65175 3 4 2 2 2
65179 3 2 3 3 3
65180 6 6 3 1 1
65185 5 5 5 1 1
65186 4 4 3 4 1
65188 5 4 5 4 5
65190 6 4 5 5 5
65191 5 6 6 1 1
65193 4 4 4 5 4
65195 4 5 4 3 4
65196 5 3 2 4 4
65197 4 5 4 4 5
65199 5 5 4 2 2
65201 4 5 5 4 2
65202 5 5 2 3 2
65204 5 5 5 3 4
65206 5 5 2 3 3
65207 5 3 5 4 4
65212 6 5 5 1 4
65213 4 4 5 2 6
65215 5 5 4 5 4
65220 4 2 5 4 5
65223 5 5 3 4 5
65224 6 6 6 2 2
65229 4 5 5 1 2
65230 5 5 5 2 1
65232 4 3 3 5 5
65235 4 3 4 3 4
65236 4 3 3 2 2
65237 4 4 5 2 3
65238 6 6 6 1 1
65240 5 5 2 2 6
65241 5 5 5 1 2
65245 1 6 1 1 5
65247 5 2 3 4 5
65249 5 5 3 2 5
65252 5 4 4 2 4
65254 5 5 4 1 4
65255 6 5 4 1 1
65256 5 5 4 2 5
65257 4 4 6 1 5
65258 6 6 6 1 1
65260 5 4 4 2 2
65262 5 5 3 3 4
65266 5 6 6 2 1
65267 5 5 6 2 2
65268 5 6 6 3 6
65271 3 2 4 2 5
65273 5 2 4 5 2
65274 5 6 3 1 3
65275 6 5 4 4 6
65278 5 4 5 3 4
65279 5 2 2 3 2
65281 2 3 5 1 2
65282 6 6 5 1 4
65285 5 4 4 2 5
65286 6 5 5 1 2
65288 5 2 3 5 4
65289 2 4 4 1 2
65291 6 2 3 3 4
65295 4 3 4 4 3
65296 5 5 5 4 4
65297 4 2 2 1 5
65299 4 2 4 3 5
65300 6 6 6 1 1
65301 4 2 2 4 4
65307 5 5 6 4 4
65309 2 4 3 4 5
65311 6 1 6 1 1
65313 6 6 5 1 5
65314 5 6 5 1 4
65316 5 4 5 3 5
65319 2 2 4 4 5
65320 2 5 2 4 5
65322 6 6 5 2 3
65326 3 2 4 3 4
65327 6 5 4 3 4
65332 3 4 5 5 5
65335 6 5 5 1 3
65342 3 2 5 3 4
65343 3 3 5 3 4
65344 3 3 4 2 4
65346 3 3 4 2 4
65347 5 4 2 2 5
65348 5 3 4 3 2
65349 5 6 3 2 5
65352 6 6 5 1 1
65353 5 2 2 2 3
65356 5 2 5 1 4
65359 5 5 3 3 5
65361 5 2 4 3 5
65362 4 4 5 NA 1
65363 5 4 4 5 6
65370 6 5 4 5 5
65372 6 6 5 1 5
65374 5 4 5 1 1
65377 6 6 6 2 1
65378 5 6 6 1 2
65381 4 6 6 1 5
65382 6 6 6 1 3
65385 2 3 3 4 6
65386 2 1 2 4 5
65387 3 6 6 1 1
65388 6 6 6 1 1
65391 5 5 5 1 1
65392 3 5 2 5 5
65395 4 5 5 4 4
65401 3 2 5 3 5
65402 4 4 1 5 5
65403 6 6 4 1 3
65404 4 3 1 4 6
65405 2 5 5 6 5
65407 1 6 5 1 1
65408 5 5 4 3 2
65411 4 3 4 4 5
65412 5 4 5 5 6
65413 5 6 5 1 3
65415 3 6 5 2 3
65417 5 4 4 2 5
65419 4 5 5 1 3
65420 1 6 5 1 1
65421 4 5 5 2 5
65424 4 NA 5 4 5
65426 5 5 6 2 2
65428 4 5 5 2 2
65430 4 2 5 4 6
65432 6 4 3 6 4
65433 3 5 6 3 2
65434 5 5 5 2 2
65435 4 5 6 3 3
65437 6 5 6 1 2
65439 6 4 2 6 5
65440 5 4 4 4 6
65442 5 5 5 1 1
65445 1 5 6 1 1
65446 4 4 4 4 6
65448 5 3 1 6 2
65450 5 5 4 3 4
65452 6 4 4 4 5
65453 6 6 3 2 2
65455 5 6 3 1 2
65457 4 5 2 3 5
65458 5 5 3 2 3
65459 6 5 5 2 1
65460 4 4 5 2 4
65462 5 6 4 2 2
65466 4 6 5 4 5
65467 5 5 4 3 2
65470 5 4 4 1 2
65472 5 5 4 2 2
65473 4 4 4 2 2
65474 5 3 3 2 3
65475 5 6 2 2 4
65476 5 2 5 3 5
65477 6 6 4 1 4
65479 6 5 5 2 3
65484 5 5 3 2 6
65487 6 5 5 1 4
65488 4 4 6 5 1
65490 5 5 4 4 2
65491 3 2 4 3 6
65494 4 5 5 1 2
65496 3 4 4 3 4
65499 5 4 5 1 1
65501 5 5 4 2 3
65502 6 5 4 1 4
65503 5 5 5 1 1
65504 3 3 4 5 3
65506 5 6 5 2 2
65510 6 4 4 5 6
65511 1 4 1 4 6
65512 5 5 3 2 4
65515 5 6 4 1 5
65519 2 2 4 6 4
65522 5 5 5 1 4
65523 4 5 5 4 6
65524 6 5 6 1 1
65526 4 4 4 2 3
65527 6 6 6 1 2
65528 3 4 3 2 3
65529 3 4 5 2 2
65532 5 4 5 2 1
65536 5 5 3 2 4
65538 6 3 4 1 3
65545 4 4 2 2 5
65547 6 5 5 2 4
65548 6 6 NA 1 1
65549 2 4 4 6 6
65551 5 4 4 1 3
65552 5 6 6 1 1
65556 4 4 4 2 2
65557 5 5 5 2 3
65563 6 2 5 1 1
65564 6 5 1 4 1
65565 6 6 6 1 1
65566 6 6 6 1 1
65568 6 5 5 5 5
65569 4 5 6 3 2
65571 5 5 4 3 5
65575 5 2 2 6 5
65577 1 5 2 4 6
65578 5 5 6 1 1
65580 5 2 1 5 5
65583 6 6 6 2 1
65584 4 3 5 3 2
65586 5 6 5 1 1
65589 6 6 3 1 1
65591 4 3 4 5 1
65592 4 6 3 3 2
65593 6 5 6 1 2
65595 4 5 6 2 3
65598 5 5 2 3 5
65599 5 6 6 5 6
65600 4 3 4 5 5
65602 5 4 4 4 6
65605 4 4 4 1 1
65606 3 5 3 4 4
65612 5 3 3 4 5
65613 3 3 1 5 6
65618 NA 3 4 3 1
65620 5 5 5 1 2
65628 4 4 3 2 2
65629 3 2 NA 2 3
65630 2 2 5 5 6
65631 4 2 5 2 2
65632 4 5 5 5 2
65633 6 6 3 1 1
65634 6 6 4 1 2
65635 4 4 2 2 2
65636 6 6 5 2 3
65641 5 5 4 3 3
65643 4 2 3 4 5
65646 5 4 5 2 2
65648 6 5 5 2 2
65649 4 4 5 2 1
65651 5 4 6 2 2
65652 5 5 4 1 2
65653 4 4 3 3 4
65654 6 5 6 1 5
65656 4 5 5 4 3
65659 6 3 4 2 2
65664 4 5 5 4 2
65668 5 6 6 3 1
65671 2 2 1 3 5
65673 5 5 4 2 2
65674 4 3 5 2 3
65675 5 6 6 1 2
65678 6 6 4 2 5
65679 4 5 3 4 4
65680 5 4 5 2 2
65682 4 6 6 1 2
65684 5 6 6 1 1
65687 3 6 6 1 3
65694 6 2 3 4 6
65695 5 5 2 1 5
65696 5 5 2 1 5
65698 5 5 6 NA 3
65699 5 5 6 3 3
65700 4 3 3 1 2
65702 4 3 5 1 2
65703 6 NA 6 1 4
65704 6 5 5 1 2
65705 5 5 4 3 5
65706 6 6 6 1 1
65708 2 1 4 4 1
65709 3 5 6 3 6
65710 2 3 2 6 6
65711 6 5 5 3 3
65712 5 4 6 2 4
65713 6 5 5 1 2
65714 4 5 4 4 4
65715 6 6 5 1 3
65720 6 6 6 1 1
65724 4 5 3 2 5
65726 2 6 5 1 2
65727 6 5 6 6 6
65728 4 5 5 4 5
65730 4 3 3 2 3
65732 1 5 1 4 1
65733 6 5 4 2 5
65734 6 6 6 1 2
65738 5 5 5 2 1
65740 5 4 5 4 4
65742 2 3 2 4 4
65743 6 5 5 1 2
65744 5 6 2 2 2
65745 5 4 5 2 2
65746 5 5 4 1 3
65747 4 2 4 3 4
65748 6 6 5 3 4
65752 4 4 3 3 2
65758 5 1 5 1 1
65762 4 6 5 4 2
65763 6 6 6 1 1
65764 4 5 4 2 2
65765 3 4 4 2 2
65767 6 5 4 4 6
65777 4 5 3 2 2
65778 6 6 6 1 2
65779 5 4 4 5 6
65793 5 5 6 3 2
65794 3 6 4 1 1
65798 4 2 2 4 2
65801 6 6 6 1 1
65802 3 5 3 2 2
65803 6 5 5 5 2
65804 5 6 6 4 5
65809 4 4 5 2 2
65811 2 2 5 2 4
65813 4 4 4 3 4
65816 4 6 3 6 5
65818 4 6 6 1 1
65820 5 4 3 1 1
65822 4 5 5 1 2
65825 5 5 5 1 1
65826 5 6 4 1 2
65828 4 3 5 3 3
65831 5 5 6 1 3
65834 5 4 4 2 3
65836 3 6 1 1 3
65838 6 5 4 6 4
65839 5 5 3 5 4
65840 4 5 4 1 1
65841 6 6 5 1 1
65842 4 4 4 4 5
65844 5 4 4 3 2
65847 6 6 6 2 1
65848 4 5 4 3 2
65849 5 NA 4 2 4
65851 4 4 4 2 5
65852 6 5 5 1 3
65856 4 5 5 2 4
65857 NA 5 2 5 6
65862 4 3 4 3 4
65863 5 5 5 4 2
65864 6 5 6 1 1
65865 4 4 4 4 5
65870 5 4 5 2 4
65874 4 4 5 3 5
65876 2 5 6 1 1
65879 6 2 4 1 2
65880 5 4 5 1 2
65883 4 5 5 4 5
65886 5 5 5 1 1
65888 5 1 5 1 4
65890 5 4 5 2 1
65891 4 4 3 4 2
65892 4 6 4 3 6
65893 6 5 6 1 1
65894 5 4 5 1 1
65895 3 5 3 1 4
65896 5 6 4 1 4
65897 4 4 6 1 3
65899 6 4 3 5 1
65900 3 4 3 4 4
65901 5 5 5 5 2
65902 4 5 1 3 4
65903 6 6 6 2 4
65905 6 6 5 1 1
65909 3 5 4 3 4
65913 5 4 5 3 4
65917 4 5 5 1 3
65918 2 6 1 6 1
65921 5 5 5 4 6
65924 NA 6 5 2 2
65925 6 6 6 2 3
65926 6 5 3 1 1
65929 4 5 3 4 NA
65930 4 5 3 4 3
65932 6 3 4 2 5
65933 NA 4 NA 3 3
65936 4 4 4 3 3
65937 6 5 6 1 1
65938 5 5 4 3 4
65940 4 6 3 1 2
65941 5 4 5 3 1
65942 5 2 4 4 4
65946 3 4 1 4 5
65948 5 6 5 1 1
65950 3 2 2 3 6
65951 6 6 5 1 1
65959 6 6 2 1 1
65961 4 4 3 1 1
65962 NA 4 2 1 1
65965 4 3 4 5 5
65969 5 5 5 4 1
65971 3 4 4 3 3
65972 5 4 4 2 NA
65973 5 5 4 1 2
65974 1 1 1 1 1
65976 4 4 4 1 2
65977 6 5 5 1 1
65981 5 5 5 1 4
65986 5 5 5 4 2
65987 5 6 6 1 2
65988 4 4 4 2 5
65989 4 5 4 3 4
65990 4 2 4 4 2
65992 5 4 5 1 2
65995 5 2 3 4 5
65998 6 6 6 1 1
65999 5 4 4 4 5
66000 5 5 4 1 2
66001 6 6 5 5 3
66002 6 5 5 1 1
66003 6 5 6 1 3
66004 6 6 5 1 1
66006 6 6 5 1 2
66007 6 6 6 1 4
66013 6 4 5 3 1
66014 5 6 5 3 1
66015 5 5 6 2 2
66016 5 4 6 3 4
66017 4 1 1 4 4
66022 5 6 4 1 4
66024 4 3 5 4 5
66032 5 5 5 3 1
66034 5 6 6 1 4
66037 4 4 4 2 1
66039 5 6 5 3 4
66042 4 5 6 1 1
66045 4 2 2 4 3
66047 5 5 4 2 1
66049 4 5 2 4 3
66050 6 6 5 1 1
66053 5 6 5 2 4
66057 4 3 4 4 5
66058 6 5 4 2 1
66060 6 5 4 5 4
66061 6 6 6 4 2
66062 3 5 5 3 2
66063 5 6 6 1 6
66064 6 5 5 3 6
66065 6 4 4 6 1
66067 3 6 6 1 2
66068 5 NA 6 5 3
66070 6 6 5 1 1
66071 5 6 1 4 6
66072 5 6 1 5 5
66077 5 5 4 4 4
66080 6 5 6 2 3
66081 5 6 5 2 1
66082 6 5 6 1 1
66083 6 2 5 2 1
66086 1 1 3 4 5
66088 5 NA 6 4 4
66092 6 6 6 1 1
66093 6 5 4 1 1
66094 5 4 4 2 5
66095 5 2 5 5 6
66096 5 2 4 2 5
66097 4 4 3 4 6
66098 5 4 5 1 2
66102 1 3 2 4 6
66106 6 6 6 1 1
66107 5 5 5 1 1
66108 4 1 5 2 5
66109 4 5 4 2 3
66114 2 4 2 3 6
66115 6 5 5 1 1
66116 4 4 4 1 2
66117 4 5 5 3 4
66119 6 6 6 4 1
66120 4 2 5 5 6
66121 4 5 6 2 4
66122 5 5 6 2 2
66125 6 5 5 2 2
66127 5 5 6 2 1
66135 6 2 5 4 1
66136 6 2 5 4 1
66138 4 4 6 3 5
66139 3 5 6 5 4
66141 6 6 6 1 1
66144 4 4 4 2 3
66150 5 4 5 2 2
66151 4 2 5 4 5
66153 5 4 2 3 2
66156 4 4 5 2 2
66157 6 5 5 1 4
66158 5 5 4 1 1
66161 5 3 6 2 4
66163 6 6 5 2 2
66164 4 NA 5 1 1
66169 6 5 5 2 4
66170 4 4 4 1 1
66171 3 1 2 5 5
66172 5 4 4 2 2
66173 1 6 6 1 5
66176 5 4 4 4 6
66181 6 5 5 1 1
66187 2 3 3 3 5
66188 5 5 4 1 2
66190 4 5 4 1 3
66191 4 4 5 1 2
66195 5 5 2 2 4
66198 5 2 5 1 2
66199 5 5 4 2 2
66201 6 6 6 1 1
66204 4 3 6 1 2
66205 4 5 4 1 1
66210 2 5 6 1 2
66212 5 3 4 4 4
66215 4 4 4 2 4
66216 4 5 3 1 2
66218 5 2 4 2 6
66219 5 5 3 2 5
66224 5 4 4 3 4
66225 5 5 5 2 3
66227 6 6 4 1 6
66231 5 5 6 1 4
66233 5 4 4 2 3
66234 3 4 3 2 4
66237 5 4 5 2 2
66244 4 4 5 2 3
66245 5 5 4 4 4
66246 3 2 4 3 2
66247 2 3 3 4 5
66251 4 4 4 4 5
66253 4 6 5 3 2
66255 4 5 6 2 3
66256 6 4 4 3 5
66257 6 6 5 1 2
66259 5 6 5 1 NA
66264 4 5 5 1 2
66265 6 6 6 2 4
66266 6 4 5 1 2
66271 5 6 5 1 2
66272 4 6 5 2 3
66273 6 5 6 2 4
66274 3 3 2 3 3
66277 5 5 5 2 2
66278 3 2 2 4 6
66279 4 4 3 3 3
66281 4 4 4 3 1
66283 6 1 6 3 2
66286 6 6 6 1 2
66288 4 6 5 2 3
66289 5 5 4 5 5
66291 5 5 5 1 3
66294 2 6 3 1 5
66295 3 3 3 3 3
66297 4 4 3 4 5
66299 4 3 4 3 5
66304 4 3 5 2 4
66306 4 4 4 2 4
66307 5 5 4 3 3
66309 6 6 1 4 6
66311 5 6 6 2 2
66312 5 4 3 3 4
66314 6 5 6 2 1
66317 5 5 5 3 3
66318 5 5 5 2 4
66323 4 5 5 4 3
66324 3 2 4 2 4
66325 5 5 4 2 5
66326 5 5 5 3 2
66329 4 4 4 2 3
66331 5 4 6 1 1
66337 2 1 2 5 5
66341 4 4 4 2 2
66344 4 2 2 4 4
66346 5 5 5 2 2
66348 3 6 4 1 3
66349 5 6 6 1 1
66357 5 3 4 4 4
66360 3 6 3 3 4
66364 1 1 5 2 6
66368 4 NA 2 3 4
66370 5 4 2 3 4
66371 5 4 2 3 3
66372 5 5 2 2 3
66373 5 6 2 3 3
66376 2 5 4 3 2
66381 4 2 2 4 3
66382 6 5 4 2 2
66389 4 5 2 3 2
66391 6 6 5 1 4
66392 4 5 4 1 1
66396 4 4 4 3 4
66399 4 3 5 2 3
66402 5 4 4 1 3
66403 4 3 4 4 6
66404 5 5 5 2 4
66405 3 2 3 4 4
66406 6 6 6 3 1
66408 6 6 5 1 1
66409 6 5 4 1 1
66410 3 5 4 4 6
66413 4 2 3 4 5
66415 5 6 4 2 3
66419 3 3 3 4 4
66421 4 4 5 2 1
66425 6 3 6 NA 3
66429 5 5 5 2 2
66431 5 5 5 1 1
66434 5 5 5 2 2
66437 5 6 6 2 3
66438 3 4 4 2 2
66439 5 2 5 2 3
66440 1 2 5 5 6
66441 4 4 4 4 4
66444 5 5 2 1 2
66445 3 5 5 2 3
66447 4 6 5 2 2
66450 4 5 5 2 2
66451 2 4 4 1 2
66459 4 3 5 3 3
66463 2 5 4 3 6
66464 4 5 5 5 5
66469 4 4 3 2 4
66472 6 4 4 4 6
66474 5 5 6 4 2
66475 6 6 4 2 6
66476 6 5 6 1 4
66483 5 5 4 1 2
66484 1 5 6 3 4
66485 4 6 5 1 1
66486 5 NA 5 1 2
66487 NA 5 4 1 6
66488 6 4 5 4 5
66491 4 4 5 4 4
66492 2 2 4 3 2
66493 3 5 5 3 4
66495 6 6 4 1 4
66496 6 4 4 2 4
66497 4 5 5 3 3
66498 3 5 2 2 4
66499 5 5 5 2 3
66500 6 6 6 1 1
66501 5 5 5 1 2
66503 6 4 6 4 2
66504 6 6 4 2 5
66506 5 4 5 2 3
66507 6 6 6 1 2
66509 6 1 5 1 1
66511 6 5 5 2 4
66512 6 6 6 1 1
66513 5 3 5 1 1
66514 4 3 3 5 4
66517 6 6 5 2 4
66520 3 1 3 1 2
66522 5 5 4 2 3
66525 5 5 5 3 5
66526 5 5 4 1 3
66528 4 2 5 2 2
66529 6 5 6 1 1
66531 3 4 6 3 3
66532 5 5 5 3 3
66533 5 6 4 5 4
66534 5 5 5 4 6
66538 3 3 5 3 2
66540 6 4 6 1 2
66545 5 5 5 3 5
66546 6 NA NA NA 4
66549 5 5 5 4 4
66550 5 5 4 2 4
66551 5 5 4 3 3
66552 6 6 3 2 1
66553 4 5 6 1 1
66554 6 5 6 1 1
66560 4 4 5 3 4
66562 6 5 5 1 4
66563 5 4 4 2 4
66564 5 4 4 4 6
66566 2 2 1 4 5
66568 4 5 6 2 1
66569 5 5 4 1 2
66570 4 5 4 4 5
66572 3 5 5 3 1
66574 3 3 4 5 5
66575 6 4 1 2 1
66576 3 4 6 4 5
66582 4 4 4 1 4
66583 5 3 6 2 6
66585 4 3 5 3 4
66588 4 6 6 1 3
66589 5 5 5 4 3
66591 5 5 3 3 4
66596 5 5 5 2 1
66598 5 6 6 1 2
66601 3 4 5 3 NA
66604 5 5 4 1 2
66605 5 5 2 4 6
66606 6 5 4 2 2
66607 4 6 5 3 3
66609 5 5 5 4 4
66610 4 5 3 5 6
66612 6 6 5 2 6
66615 5 5 2 3 3
66617 6 6 4 2 4
66619 6 5 5 1 1
66620 5 5 4 3 6
66621 6 6 6 1 1
66622 4 2 2 5 5
66623 4 5 3 3 5
66630 4 3 5 3 2
66635 2 5 2 5 6
66637 3 4 5 3 2
66638 5 4 3 2 2
66642 5 6 5 4 3
66645 6 4 4 3 3
66646 6 5 5 2 5
66647 5 5 5 4 4
66648 5 5 2 2 2
66649 5 4 4 1 4
66651 4 5 2 3 3
66653 5 4 5 2 6
66657 5 6 6 3 1
66660 4 4 5 3 3
66662 6 5 6 2 1
66663 4 5 4 4 4
66664 5 6 2 2 2
66665 4 3 4 2 3
66666 5 6 5 2 1
66668 4 6 4 1 1
66669 4 5 5 2 4
66671 4 NA NA 2 2
66674 6 6 6 1 1
66676 2 3 4 3 2
66679 5 3 4 4 4
66680 5 4 4 2 4
66681 4 6 4 2 2
66682 5 6 4 1 2
66683 4 3 4 3 3
66684 5 5 3 2 3
66685 5 5 4 2 2
66689 4 3 5 4 4
66690 3 2 4 3 4
66692 6 6 NA 5 1
66694 5 4 5 2 3
66700 6 6 5 1 2
66701 5 6 6 3 4
66703 5 4 6 4 4
66704 3 3 3 5 5
66708 6 5 6 2 3
66711 3 3 5 3 5
66712 5 5 5 4 3
66713 5 5 4 1 6
66716 5 6 5 2 6
66717 3 4 2 5 6
66718 2 4 5 3 4
66722 6 6 3 1 2
66723 2 6 4 3 6
66724 5 5 6 3 3
66727 6 6 6 1 1
66728 4 5 5 2 3
66729 6 5 5 1 5
66730 2 NA 3 2 6
66731 6 5 5 3 3
66733 4 4 4 2 4
66734 5 3 4 2 4
66737 4 4 5 1 1
66739 4 4 5 4 5
66741 5 4 6 3 4
66743 5 5 3 2 2
66744 5 5 4 2 5
66745 5 6 5 1 4
66748 6 6 6 1 1
66749 6 6 5 1 1
66751 5 5 5 1 1
66755 4 5 4 3 3
66756 NA 6 5 5 1
66757 4 4 4 4 4
66760 4 4 4 2 2
66764 1 5 5 NA 2
66766 3 2 2 5 5
66768 6 5 6 1 1
66769 5 5 4 4 2
66770 6 5 5 4 4
66771 2 2 2 5 5
66772 6 5 5 4 2
66775 5 5 5 1 2
66778 6 5 5 1 1
66779 5 5 5 1 3
66785 3 3 6 1 1
66788 5 6 6 2 6
66790 5 6 5 1 5
66792 2 6 5 2 1
66793 4 5 5 1 2
66797 5 5 2 2 5
66800 5 5 5 1 2
66801 4 5 5 1 3
66804 6 5 4 1 1
66806 4 5 5 3 3
66807 2 4 4 4 3
66810 5 4 5 2 5
66812 5 5 5 2 6
66813 5 4 2 4 4
66814 5 6 4 2 4
66817 3 2 4 5 4
66819 4 3 5 3 6
66820 6 5 4 2 4
66824 4 6 5 3 4
66826 2 2 4 3 4
66830 3 2 3 4 4
66831 5 4 5 3 2
66832 3 1 3 5 5
66833 1 6 6 1 3
66838 6 6 5 2 2
66839 4 2 2 2 3
66840 6 4 5 2 2
66842 5 4 3 1 1
66843 5 3 5 5 5
66845 5 5 5 1 3
66847 4 3 2 2 4
66848 6 6 6 1 2
66850 4 5 4 2 2
66853 5 4 5 2 2
66855 5 4 4 2 5
66856 4 5 4 2 4
66857 3 5 NA 2 5
66858 5 3 5 2 6
66860 5 4 4 3 4
66863 4 5 4 3 6
66864 5 6 5 3 6
66867 3 5 4 NA 2
66868 2 1 1 4 3
66869 5 5 2 2 2
66872 5 6 4 2 3
66873 5 4 6 1 1
66879 NA 4 5 2 2
66886 6 6 5 1 1
66887 5 5 4 1 2
66890 1 1 3 5 6
66892 6 6 6 1 2
66896 5 4 2 3 2
66897 5 5 6 1 2
66898 4 4 4 3 5
66899 4 2 3 5 6
66902 3 6 6 1 4
66903 3 4 2 4 5
66905 4 4 5 4 2
66911 5 4 5 2 5
66916 5 5 4 3 2
66917 4 2 4 4 4
66918 5 2 1 1 6
66919 5 5 6 2 4
66920 5 5 6 1 5
66921 4 3 3 4 4
66924 4 5 4 1 3
66925 6 5 5 2 1
66926 5 5 5 1 5
66927 5 5 5 2 4
66929 6 5 5 3 4
66930 4 5 5 2 2
66932 6 5 6 2 4
66934 5 2 4 2 3
66935 5 4 3 2 5
66937 6 5 6 2 2
66944 5 5 3 4 3
66945 5 6 5 1 2
66946 2 1 4 5 4
66947 5 5 5 2 4
66949 5 6 3 3 5
66953 2 1 3 6 5
66960 3 4 5 4 4
66962 5 5 5 3 5
66965 5 4 4 3 4
66968 5 4 5 5 6
66970 6 6 1 3 1
66982 5 6 5 1 1
66983 6 5 6 5 1
66985 5 5 5 2 2
66986 3 3 2 3 5
66987 2 5 2 1 4
66988 6 4 5 2 5
66994 6 5 2 4 6
66995 4 6 5 4 5
66997 4 1 6 2 4
67000 1 1 1 1 4
67003 3 1 5 4 6
67007 5 6 2 2 4
67008 5 6 5 4 3
67013 4 2 4 4 4
67014 5 4 5 5 2
67017 6 5 4 2 6
67018 6 6 5 1 3
67019 6 6 4 1 2
67022 3 5 2 4 2
67023 5 5 4 1 3
67024 6 4 6 2 3
67025 6 6 5 1 2
67026 2 3 5 3 5
67027 5 3 5 2 4
67029 5 6 4 2 5
67031 5 5 5 2 3
67033 5 5 6 3 2
67034 4 4 4 3 2
67036 4 5 5 1 2
67039 4 4 4 4 6
67040 3 3 2 3 4
67041 6 5 6 1 1
67042 4 4 4 3 2
67043 5 5 5 2 2
67045 6 6 4 1 2
67046 6 5 6 1 4
67049 5 6 5 1 1
67055 6 5 6 1 2
67056 6 5 6 2 5
67057 6 5 5 1 2
67059 4 6 3 1 3
67064 NA 6 5 4 4
67065 5 2 4 2 2
67066 5 5 2 2 6
67070 NA 6 4 2 2
67072 4 5 5 2 1
67073 3 6 6 1 1
67075 5 3 4 2 3
67078 5 4 5 2 5
67079 5 5 5 1 2
67080 1 1 2 6 6
67082 5 6 5 5 5
67085 6 5 5 2 1
67087 5 4 4 2 2
67091 3 5 3 3 4
67093 3 4 2 4 4
67095 6 6 4 3 6
67096 3 2 4 3 6
67098 6 6 6 1 1
67101 3 4 4 2 2
67104 3 4 4 4 4
67107 6 5 4 2 4
67109 5 5 5 1 2
67115 5 5 4 3 4
67116 4 3 3 2 6
67118 2 4 1 6 6
67119 1 6 2 1 4
67121 3 3 5 2 4
67123 5 4 4 1 1
67124 1 3 1 4 5
67126 6 6 3 1 4
67132 5 4 3 2 6
67134 4 2 1 4 6
67135 4 4 5 2 4
67136 4 4 5 6 2
67140 5 5 5 3 4
67143 4 5 5 1 4
67144 5 6 5 3 2
67145 2 3 4 5 6
67146 2 2 4 3 1
67148 3 3 3 2 4
67149 5 2 5 6 4
67152 5 6 5 1 1
67154 2 5 5 5 2
67155 5 6 1 3 1
67156 5 6 5 4 3
67157 4 5 4 3 3
67158 6 5 5 3 3
67161 5 6 6 2 1
67162 2 4 4 4 2
67168 6 6 4 4 2
67174 5 4 3 2 2
67179 6 6 5 1 1
67180 5 2 5 4 5
67183 4 5 3 1 4
67184 4 2 3 3 4
67185 5 4 5 2 4
67186 6 4 1 3 2
67188 1 1 4 5 5
67189 6 NA 3 1 1
67190 5 4 3 4 5
67191 3 3 3 5 6
67197 5 4 5 4 2
67202 3 2 5 6 6
67203 6 6 5 3 3
67206 6 6 NA 3 4
67213 4 3 4 4 3
67215 4 2 5 4 4
67220 2 3 4 4 4
67222 5 4 6 2 4
67223 6 6 6 1 1
67224 3 5 2 3 5
67225 6 5 3 1 4
67226 1 1 4 5 6
67229 1 1 2 5 6
67230 4 4 6 3 3
67232 5 5 4 1 1
67234 6 5 5 2 6
67237 5 5 5 2 2
67238 6 5 2 5 5
67239 6 6 5 2 4
67240 4 5 2 2 6
67242 4 3 3 3 3
67246 4 4 4 2 2
67247 4 4 3 4 4
67251 5 5 6 1 1
67254 2 6 3 4 5
67255 6 6 6 1 1
67257 4 5 4 4 5
67258 6 5 4 2 5
67259 4 NA 6 NA 1
67260 4 2 1 2 2
67262 4 5 6 1 2
67263 4 3 4 3 4
67269 4 3 6 4 1
67270 5 5 5 2 4
67271 3 4 4 3 4
67272 2 3 4 5 2
67274 3 4 5 6 6
67275 6 5 5 1 1
67277 4 4 5 2 2
67278 4 5 2 4 6
67279 5 3 5 2 2
67283 6 5 5 1 4
67284 3 2 4 2 4
67286 5 5 3 1 1
67287 6 6 4 1 2
67288 6 6 1 1 1
67289 5 4 5 2 4
67294 4 4 4 4 5
67295 6 6 5 1 1
67298 5 5 6 3 1
67299 6 4 4 3 3
67303 3 4 5 3 3
67307 2 1 1 6 6
67309 3 5 5 3 3
67310 4 4 4 3 4
67312 3 4 4 4 5
67313 6 6 2 1 4
67315 5 5 5 1 1
67316 4 4 4 2 3
67322 2 3 4 2 5
67324 5 6 5 4 4
67325 6 6 6 1 1
67328 2 2 4 5 3
67331 5 5 5 4 5
67332 5 4 5 3 2
67334 5 6 6 1 3
67335 4 5 4 2 2
67336 5 5 5 2 5
67338 4 5 5 2 4
67339 6 6 5 1 2
67341 5 4 5 2 1
67342 4 4 6 1 1
67344 3 1 1 6 5
67345 5 5 1 5 5
67346 3 6 3 2 6
67347 2 4 NA 4 4
67352 5 6 6 1 4
67355 6 5 6 1 2
67356 6 5 6 1 2
67357 5 2 4 2 5
67360 6 4 6 2 5
67363 3 2 4 4 1
67364 6 6 2 4 4
67365 6 6 6 1 1
67366 5 6 4 2 2
67367 6 6 6 1 2
67368 2 NA 6 NA 3
67370 5 5 6 5 4
67371 5 5 6 5 4
67374 5 4 3 2 6
67376 6 6 5 3 3
67377 4 4 4 3 4
67378 4 4 4 3 5
67379 5 3 5 3 2
67380 2 1 4 6 4
67382 5 4 4 1 3
67388 5 4 5 2 2
67390 4 5 6 4 5
67392 6 5 4 3 4
67393 3 5 5 2 5
67395 5 5 4 5 5
67396 4 4 4 4 5
67397 4 5 5 3 1
67399 3 3 4 4 4
67401 6 5 5 1 1
67403 2 2 4 5 5
67406 5 4 2 5 6
67408 6 6 6 1 3
67413 1 1 1 1 6
67415 6 6 3 1 1
67417 1 3 2 5 6
67418 5 5 5 2 5
67420 4 4 5 3 5
67421 6 6 6 2 1
67426 5 5 5 2 5
67427 5 1 2 6 4
67429 5 3 5 3 5
67431 4 5 5 2 4
67436 5 4 5 3 4
67438 5 4 4 3 2
67439 5 4 4 3 2
67440 4 6 3 4 5
67441 4 3 4 2 3
67442 6 6 2 3 3
67445 5 4 5 2 2
67446 3 3 5 2 2
67447 5 5 6 3 4
67449 6 4 2 5 6
67451 2 4 4 1 2
67453 6 5 5 1 4
67454 5 5 3 2 4
67455 6 6 6 2 1
67458 3 3 1 3 4
67460 3 3 6 3 6
67462 5 4 4 3 5
67465 6 6 6 6 6
67471 4 4 4 2 5
67473 4 5 5 2 2
67479 4 3 3 4 2
67480 3 6 1 5 6
67483 5 3 4 2 3
67485 6 5 5 1 5
67487 6 5 5 1 1
67488 5 3 5 3 3
67489 4 4 3 3 4
67490 6 5 5 5 3
67495 4 4 2 2 2
67497 5 6 5 1 2
67502 4 4 4 4 3
67503 2 4 4 3 3
67504 5 3 3 5 5
67505 5 4 5 1 2
67506 6 6 6 1 1
67507 4 6 4 1 2
67508 5 4 4 2 2
67509 6 6 5 2 6
67510 2 4 4 5 1
67512 6 5 2 4 1
67516 3 5 4 4 4
67518 5 5 5 3 3
67521 5 6 5 2 2
67522 6 6 5 1 1
67523 5 6 6 1 1
67524 6 NA 5 2 2
67525 6 6 5 1 3
67526 5 5 5 2 5
67528 5 5 4 4 5
67529 5 5 5 2 3
67530 5 4 5 2 3
67531 6 5 5 2 4
67533 5 6 5 1 2
67534 5 2 2 4 3
67535 5 5 5 4 1
67537 4 4 1 4 1
67539 6 6 5 2 1
67540 5 4 3 4 4
67541 3 5 3 6 4
67544 6 6 2 4 5
67547 5 4 5 3 4
67549 5 4 2 3 5
67551 6 6 6 1 1
67552 2 3 4 4 3
67556 5 5 5 1 1
67559 5 5 5 2 6
67560 5 5 3 3 3
filter()
filter()
with logical statements to include only rows that match certain conditions==
or !=
<
or <=
>
or >=
%in%
all_of()
one_of()
!
|
and &
pivot_longer()
and pivot_wider()
pivot_longer()
gather()
) Makes wide data long, based on a key
data
: the data, blank if pipedcols
: columns to be made long, selected via select()
callsnames_to
: name(s) of key column(s) in new long data frame (string or string vector)values_to
: name of values in new long data frame (string)names_sep
: separator in column headers, if multiple keysvalues_drop_na
: drop missing cells (similar to na.rm = T
) pivot_longer()
spc_tbl_ [317 × 79] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ artist : chr [1:317] "2 Pac" "2Ge+her" "3 Doors Down" "3 Doors Down" ...
$ track : chr [1:317] "Baby Don't Cry (Keep..." "The Hardest Part Of ..." "Kryptonite" "Loser" ...
$ date.entered: Date[1:317], format: "2000-02-26" "2000-09-02" ...
$ wk1 : num [1:317] 87 91 81 76 57 51 97 84 59 76 ...
$ wk2 : num [1:317] 82 87 70 76 34 39 97 62 53 76 ...
$ wk3 : num [1:317] 72 92 68 72 25 34 96 51 38 74 ...
$ wk4 : num [1:317] 77 NA 67 69 17 26 95 41 28 69 ...
$ wk5 : num [1:317] 87 NA 66 67 17 26 100 38 21 68 ...
$ wk6 : num [1:317] 94 NA 57 65 31 19 NA 35 18 67 ...
$ wk7 : num [1:317] 99 NA 54 55 36 2 NA 35 16 61 ...
$ wk8 : num [1:317] NA NA 53 59 49 2 NA 38 14 58 ...
$ wk9 : num [1:317] NA NA 51 62 53 3 NA 38 12 57 ...
$ wk10 : num [1:317] NA NA 51 61 57 6 NA 36 10 59 ...
$ wk11 : num [1:317] NA NA 51 61 64 7 NA 37 9 66 ...
$ wk12 : num [1:317] NA NA 51 59 70 22 NA 37 8 68 ...
$ wk13 : num [1:317] NA NA 47 61 75 29 NA 38 6 61 ...
$ wk14 : num [1:317] NA NA 44 66 76 36 NA 49 1 67 ...
$ wk15 : num [1:317] NA NA 38 72 78 47 NA 61 2 59 ...
$ wk16 : num [1:317] NA NA 28 76 85 67 NA 63 2 63 ...
$ wk17 : num [1:317] NA NA 22 75 92 66 NA 62 2 67 ...
$ wk18 : num [1:317] NA NA 18 67 96 84 NA 67 2 71 ...
$ wk19 : num [1:317] NA NA 18 73 NA 93 NA 83 3 79 ...
$ wk20 : num [1:317] NA NA 14 70 NA 94 NA 86 4 89 ...
$ wk21 : num [1:317] NA NA 12 NA NA NA NA NA 5 NA ...
$ wk22 : num [1:317] NA NA 7 NA NA NA NA NA 5 NA ...
$ wk23 : num [1:317] NA NA 6 NA NA NA NA NA 6 NA ...
$ wk24 : num [1:317] NA NA 6 NA NA NA NA NA 9 NA ...
$ wk25 : num [1:317] NA NA 6 NA NA NA NA NA 13 NA ...
$ wk26 : num [1:317] NA NA 5 NA NA NA NA NA 14 NA ...
$ wk27 : num [1:317] NA NA 5 NA NA NA NA NA 16 NA ...
$ wk28 : num [1:317] NA NA 4 NA NA NA NA NA 23 NA ...
$ wk29 : num [1:317] NA NA 4 NA NA NA NA NA 22 NA ...
$ wk30 : num [1:317] NA NA 4 NA NA NA NA NA 33 NA ...
$ wk31 : num [1:317] NA NA 4 NA NA NA NA NA 36 NA ...
$ wk32 : num [1:317] NA NA 3 NA NA NA NA NA 43 NA ...
$ wk33 : num [1:317] NA NA 3 NA NA NA NA NA NA NA ...
$ wk34 : num [1:317] NA NA 3 NA NA NA NA NA NA NA ...
$ wk35 : num [1:317] NA NA 4 NA NA NA NA NA NA NA ...
$ wk36 : num [1:317] NA NA 5 NA NA NA NA NA NA NA ...
$ wk37 : num [1:317] NA NA 5 NA NA NA NA NA NA NA ...
$ wk38 : num [1:317] NA NA 9 NA NA NA NA NA NA NA ...
$ wk39 : num [1:317] NA NA 9 NA NA NA NA NA NA NA ...
$ wk40 : num [1:317] NA NA 15 NA NA NA NA NA NA NA ...
$ wk41 : num [1:317] NA NA 14 NA NA NA NA NA NA NA ...
$ wk42 : num [1:317] NA NA 13 NA NA NA NA NA NA NA ...
$ wk43 : num [1:317] NA NA 14 NA NA NA NA NA NA NA ...
$ wk44 : num [1:317] NA NA 16 NA NA NA NA NA NA NA ...
$ wk45 : num [1:317] NA NA 17 NA NA NA NA NA NA NA ...
$ wk46 : num [1:317] NA NA 21 NA NA NA NA NA NA NA ...
$ wk47 : num [1:317] NA NA 22 NA NA NA NA NA NA NA ...
$ wk48 : num [1:317] NA NA 24 NA NA NA NA NA NA NA ...
$ wk49 : num [1:317] NA NA 28 NA NA NA NA NA NA NA ...
$ wk50 : num [1:317] NA NA 33 NA NA NA NA NA NA NA ...
$ wk51 : num [1:317] NA NA 42 NA NA NA NA NA NA NA ...
$ wk52 : num [1:317] NA NA 42 NA NA NA NA NA NA NA ...
$ wk53 : num [1:317] NA NA 49 NA NA NA NA NA NA NA ...
$ wk54 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk55 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk56 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk57 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk58 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk59 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk60 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk61 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk62 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk63 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk64 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk65 : num [1:317] NA NA NA NA NA NA NA NA NA NA ...
$ wk66 : logi [1:317] NA NA NA NA NA NA ...
$ wk67 : logi [1:317] NA NA NA NA NA NA ...
$ wk68 : logi [1:317] NA NA NA NA NA NA ...
$ wk69 : logi [1:317] NA NA NA NA NA NA ...
$ wk70 : logi [1:317] NA NA NA NA NA NA ...
$ wk71 : logi [1:317] NA NA NA NA NA NA ...
$ wk72 : logi [1:317] NA NA NA NA NA NA ...
$ wk73 : logi [1:317] NA NA NA NA NA NA ...
$ wk74 : logi [1:317] NA NA NA NA NA NA ...
$ wk75 : logi [1:317] NA NA NA NA NA NA ...
$ wk76 : logi [1:317] NA NA NA NA NA NA ...
- attr(*, "spec")=
.. cols(
.. year = col_skip(),
.. artist = col_character(),
.. track = col_character(),
.. time = col_skip(),
.. date.entered = col_date(format = ""),
.. wk1 = col_double(),
.. wk2 = col_double(),
.. wk3 = col_double(),
.. wk4 = col_double(),
.. wk5 = col_double(),
.. wk6 = col_double(),
.. wk7 = col_double(),
.. wk8 = col_double(),
.. wk9 = col_double(),
.. wk10 = col_double(),
.. wk11 = col_double(),
.. wk12 = col_double(),
.. wk13 = col_double(),
.. wk14 = col_double(),
.. wk15 = col_double(),
.. wk16 = col_double(),
.. wk17 = col_double(),
.. wk18 = col_double(),
.. wk19 = col_double(),
.. wk20 = col_double(),
.. wk21 = col_double(),
.. wk22 = col_double(),
.. wk23 = col_double(),
.. wk24 = col_double(),
.. wk25 = col_double(),
.. wk26 = col_double(),
.. wk27 = col_double(),
.. wk28 = col_double(),
.. wk29 = col_double(),
.. wk30 = col_double(),
.. wk31 = col_double(),
.. wk32 = col_double(),
.. wk33 = col_double(),
.. wk34 = col_double(),
.. wk35 = col_double(),
.. wk36 = col_double(),
.. wk37 = col_double(),
.. wk38 = col_double(),
.. wk39 = col_double(),
.. wk40 = col_double(),
.. wk41 = col_double(),
.. wk42 = col_double(),
.. wk43 = col_double(),
.. wk44 = col_double(),
.. wk45 = col_double(),
.. wk46 = col_double(),
.. wk47 = col_double(),
.. wk48 = col_double(),
.. wk49 = col_double(),
.. wk50 = col_double(),
.. wk51 = col_double(),
.. wk52 = col_double(),
.. wk53 = col_double(),
.. wk54 = col_double(),
.. wk55 = col_double(),
.. wk56 = col_double(),
.. wk57 = col_double(),
.. wk58 = col_double(),
.. wk59 = col_double(),
.. wk60 = col_double(),
.. wk61 = col_double(),
.. wk62 = col_double(),
.. wk63 = col_double(),
.. wk64 = col_double(),
.. wk65 = col_double(),
.. wk66 = col_logical(),
.. wk67 = col_logical(),
.. wk68 = col_logical(),
.. wk69 = col_logical(),
.. wk70 = col_logical(),
.. wk71 = col_logical(),
.. wk72 = col_logical(),
.. wk73 = col_logical(),
.. wk74 = col_logical(),
.. wk75 = col_logical(),
.. wk76 = col_logical()
.. )
pivot_longer()
billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
names_prefix = "wk",
names_transform = as.numeric,
values_to = "rank"
)
# A tibble: 24,092 × 5
artist track date.entered week rank
<chr> <chr> <date> <dbl> <dbl>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 7 99
8 2 Pac Baby Don't Cry (Keep... 2000-02-26 8 NA
9 2 Pac Baby Don't Cry (Keep... 2000-02-26 9 NA
10 2 Pac Baby Don't Cry (Keep... 2000-02-26 10 NA
# ℹ 24,082 more rows
pivot_longer()
# load the codebook
(codebook <- read_csv("week6-codebook.csv") |>
mutate(old_name = str_to_lower(old_name)))
# A tibble: 153 × 14
dataset old_name item_text scale category label item_name year new_name
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 <NA> persnr Never Changin… <NA> Procedu… <NA> SID 0 Proc_SID
2 <NA> hhnr household ID <NA> Procedu… <NA> household 0 Proc_HH…
3 ppfad gebjahr Year of Birth "num… Demogra… <NA> DOB 0 Demo_dob
4 ppfad sex Sex "\n1… Demogra… <NA> Sex 0 Demo__s…
5 vp vp12501 Thorough Work… <NA> big5 C thorough 2005 big5_C_…
6 zp zp12001 Thorough Work… <NA> big5 C thorough 2006 big5_C_…
7 bdp bdp15101 Thorough Work… <NA> big5 C thorough 2013 big5_C_…
8 vp vp12502 Am communicat… <NA> big5 E communic 2005 big5_E_…
9 zp zp12002 Am communicat… <NA> big5 E communic 2009 big5_E_…
10 bdp bdp15102 Am communicat… <NA> big5 E communic 2013 big5_E_…
# ℹ 143 more rows
# ℹ 5 more variables: reverse <dbl>, mini <dbl>, maxi <dbl>, recode <chr>,
# lavaan_name <chr>
old.names <- codebook$old_name # get old column names
new.names <- codebook$new_name # get new column names
soep <- read_csv("week6-data.csv") |>
select(all_of(old.names))
soep
# A tibble: 28,290 × 153
persnr hhnr gebjahr sex vp12501 zp12001 bdp15101 vp12502 zp12002 bdp15102
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 901 94 1951 2 6 -1 7 4 4 5
2 1202 124 1913 2 7 NA NA 6 NA NA
3 2301 230 1946 1 7 6 6 6 4 5
4 2302 230 1946 2 6 7 7 5 5 5
5 2304 230 1978 1 5 NA NA 7 NA NA
6 2305 230 1946 2 NA NA NA NA NA NA
7 4601 469 1933 2 6 NA NA 6 NA NA
8 4701 477 1919 2 6 6 NA 6 5 NA
9 4901 493 1925 2 5 6 6 7 6 5
10 5201 523 1955 1 7 7 7 5 6 4
# ℹ 28,280 more rows
# ℹ 143 more variables: vp12503 <dbl>, zp12003 <dbl>, bdp15103 <dbl>,
# vp12504 <dbl>, zp12004 <dbl>, bdp15104 <dbl>, vp12505 <dbl>, zp12005 <dbl>,
# bdp15105 <dbl>, vp12506 <dbl>, zp12006 <dbl>, bdp15106 <dbl>,
# vp12507 <dbl>, zp12007 <dbl>, bdp15107 <dbl>, vp12508 <dbl>, zp12008 <dbl>,
# bdp15108 <dbl>, vp12509 <dbl>, zp12009 <dbl>, bdp15109 <dbl>,
# vp12510 <dbl>, zp12010 <dbl>, bdp15110 <dbl>, vp12511 <dbl>, …
pivot_longer()
# A tibble: 28,290 × 153
Proc_SID Proc_HHID Demo_dob Demo__sex big5_C_thorough_2005
<dbl> <dbl> <dbl> <dbl> <dbl>
1 901 94 1951 2 6
2 1202 124 1913 2 7
3 2301 230 1946 1 7
4 2302 230 1946 2 6
5 2304 230 1978 1 5
6 2305 230 1946 2 NA
7 4601 469 1933 2 6
8 4701 477 1919 2 6
9 4901 493 1925 2 5
10 5201 523 1955 1 7
# ℹ 28,280 more rows
# ℹ 148 more variables: big5_C_thorough_2006 <dbl>, big5_C_thorough_2013 <dbl>,
# big5_E_communic_2005 <dbl>, big5_E_communic_2009 <dbl>,
# big5_E_communic_2013 <dbl>, big5_A_coarse_2005 <dbl>,
# big5_A_coarse_2009 <dbl>, big5_A_coarse_2013 <dbl>,
# big5_O_original_2005 <dbl>, big5_O_original_2009 <dbl>,
# big5_O_original_2013 <dbl>, big5_N_worry_2005 <dbl>, …
pivot_longer()
By pivoting our data longer, we can more easily extract information from the column names
soep_long <- soep |>
setNames(new.names) |>
pivot_longer(
cols = c(-starts_with("Proc"), -starts_with("Dem"))
, names_to = c("category", "label", "item_name", "year")
, names_pattern = "(.*)_(.*)_(.*)_(.*)"
, values_to = "value"
, values_drop_na = T
) |> mutate(year = as.numeric(year))
soep_long
# A tibble: 1,845,743 × 9
Proc_SID Proc_HHID Demo_dob Demo__sex category label item_name year value
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <dbl>
1 901 94 1951 2 big5 C thorough 2005 6
2 901 94 1951 2 big5 C thorough 2006 -1
3 901 94 1951 2 big5 C thorough 2013 7
4 901 94 1951 2 big5 E communic 2005 4
5 901 94 1951 2 big5 E communic 2009 4
6 901 94 1951 2 big5 E communic 2013 5
7 901 94 1951 2 big5 A coarse 2005 4
8 901 94 1951 2 big5 A coarse 2009 3
9 901 94 1951 2 big5 A coarse 2013 4
10 901 94 1951 2 big5 O original 2005 5
# ℹ 1,845,733 more rows
pivot_longer()
soep_big5 <- soep_long |>
filter(category == "big5") |>
mutate(value = mapvalues(value, seq(-8,0), rep(NA, 9))) |>
drop_na(value) |>
group_by(Proc_SID, label, year) |>
summarize(value = mean(value)) |>
ungroup()
soep_le <- soep_long |>
filter(category == "le") |>
mutate(value = mapvalues(value, seq(-8,1), c(rep(NA, 6), 0, NA, NA, 1))) |>
drop_na(value) |>
group_by(Proc_SID, label) |>
summarize(value = sum(value)) |>
ungroup()
soep_clean <- soep_big5 |>
rename(trait = label, p_value = value) |>
inner_join(
soep_le |>
rename(le = label, le_value = value)
)
pivot_wider()
spread()
) Makes wide data long, based on a key
data
: the data, blank if pipednames_from
: name(s) of key column(s) in new long data frame (string or string vector)names_sep
: separator in column headers, if multiple keysnames_glue
: specify multiple or custom separators of multiple keysvalues_from
: name of values in new long data frame (string)values_fn
: function applied to data with duplicate labels pivot_wider()
lavaan
in R requires that both indicators and time are wide format.big5 <- codebook |> filter(category == "big5")
soep_lavaan <- soep_long |>
filter(category == "big5") |>
mutate(item_name = mapvalues(item_name, big5$item_name, big5$lavaan_name, warn_missing = F))
soep_lavaan
# A tibble: 544,830 × 9
Proc_SID Proc_HHID Demo_dob Demo__sex category label item_name year value
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <dbl>
1 901 94 1951 2 big5 C I1 2005 6
2 901 94 1951 2 big5 C I1 2006 -1
3 901 94 1951 2 big5 C I1 2013 7
4 901 94 1951 2 big5 E I1 2005 4
5 901 94 1951 2 big5 E I1 2009 4
6 901 94 1951 2 big5 E I1 2013 5
7 901 94 1951 2 big5 A I1 2005 4
8 901 94 1951 2 big5 A I1 2009 3
9 901 94 1951 2 big5 A I1 2013 4
10 901 94 1951 2 big5 O I1 2005 5
# ℹ 544,820 more rows
pivot_wider()
soep_lavaan
data frame to be in wide format using pivot_wider()
:
names
from two sources: item_name()
and year
# A tibble: 113,635 × 16
Proc_SID Proc_HHID Demo_dob Demo__sex category label I1_2005 I1_2006 I1_2013
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1 901 94 1951 2 big5 C 6 -1 7
2 901 94 1951 2 big5 E 4 NA 5
3 901 94 1951 2 big5 A 4 NA 4
4 901 94 1951 2 big5 O 5 NA 3
5 901 94 1951 2 big5 N 6 NA 6
6 1202 124 1913 2 big5 C 7 NA NA
7 1202 124 1913 2 big5 E 6 NA NA
8 1202 124 1913 2 big5 A 1 NA NA
9 1202 124 1913 2 big5 O 6 NA NA
10 1202 124 1913 2 big5 N 6 NA NA
# ℹ 113,625 more rows
# ℹ 7 more variables: I1_2009 <dbl>, I2_2005 <dbl>, I2_2009 <dbl>,
# I2_2013 <dbl>, I3_2005 <dbl>, I3_2009 <dbl>, I3_2013 <dbl>
dplyr
: `_join()’_join()
Functionsfull_join()
inner_join()
left_join()
right_join()
full_join()
NA
sfull_join()
soep_long |>
filter(!category == "big5") |>
full_join(codebook |> select(category, label, item_name, year, item_text))
# A tibble: 1,300,962 × 10
Proc_SID Proc_HHID Demo_dob Demo__sex category label item_name year value
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <dbl>
1 901 94 1951 2 le ChldBrth ChldBrth 2005 -2
2 901 94 1951 2 le ChldBrth ChldBrth 2006 -2
3 901 94 1951 2 le ChldBrth ChldBrth 2007 -2
4 901 94 1951 2 le ChldBrth ChldBrth 2008 -2
5 901 94 1951 2 le ChldBrth ChldBrth 2009 -2
6 901 94 1951 2 le ChldBrth ChldBrth 2010 -2
7 901 94 1951 2 le ChldBrth ChldBrth 2011 -2
8 901 94 1951 2 le ChldBrth ChldBrth 2012 -2
9 901 94 1951 2 le ChldBrth ChldBrth 2013 -2
10 901 94 1951 2 le ChldBrth ChldBrth 2014 -2
# ℹ 1,300,952 more rows
# ℹ 1 more variable: item_text <chr>
inner_join()
inner_join()
soep_long |>
filter(category == "big5") |>
select(Proc_SID, trait = label, item_name, year, p_value = value) |>
inner_join(
soep_long |>
filter(category == "le") |>
select(Proc_SID, le = label, year, le_value = value)
)
# A tibble: 5,118,954 × 7
Proc_SID trait item_name year p_value le le_value
<dbl> <chr> <chr> <dbl> <dbl> <chr> <dbl>
1 901 C thorough 2005 6 ChldBrth -2
2 901 C thorough 2005 6 ChldMvOut -2
3 901 C thorough 2005 6 Divorce -2
4 901 C thorough 2005 6 DadDied -2
5 901 C thorough 2005 6 Married -2
6 901 C thorough 2005 6 MomDied -2
7 901 C thorough 2005 6 MoveIn -2
8 901 C thorough 2005 6 PartDied -2
9 901 C thorough 2005 6 SepPart -2
10 901 C thorough 2006 -1 ChldBrth -2
# ℹ 5,118,944 more rows
left_join()
soep_long |>
filter(category == "big5") |>
select(Proc_SID, trait = label, item_name, year, p_value = value) |>
left_join(
soep_long |>
filter(category == "le") |>
select(Proc_SID, le = label, year, le_value = value)
)
# A tibble: 5,120,918 × 7
Proc_SID trait item_name year p_value le le_value
<dbl> <chr> <chr> <dbl> <dbl> <chr> <dbl>
1 901 C thorough 2005 6 ChldBrth -2
2 901 C thorough 2005 6 ChldMvOut -2
3 901 C thorough 2005 6 Divorce -2
4 901 C thorough 2005 6 DadDied -2
5 901 C thorough 2005 6 Married -2
6 901 C thorough 2005 6 MomDied -2
7 901 C thorough 2005 6 MoveIn -2
8 901 C thorough 2005 6 PartDied -2
9 901 C thorough 2005 6 SepPart -2
10 901 C thorough 2006 -1 ChldBrth -2
# ℹ 5,120,908 more rows
right_join()
soep_long |>
filter(category == "big5") |>
select(Proc_SID, trait = label, item_name, year, p_value = value) |>
right_join(
soep_long |>
filter(category == "le") |>
select(Proc_SID, le = label, year, le_value = value)
)
# A tibble: 6,002,158 × 7
Proc_SID trait item_name year p_value le le_value
<dbl> <chr> <chr> <dbl> <dbl> <chr> <dbl>
1 901 C thorough 2005 6 ChldBrth -2
2 901 C thorough 2005 6 ChldMvOut -2
3 901 C thorough 2005 6 Divorce -2
4 901 C thorough 2005 6 DadDied -2
5 901 C thorough 2005 6 Married -2
6 901 C thorough 2005 6 MomDied -2
7 901 C thorough 2005 6 MoveIn -2
8 901 C thorough 2005 6 PartDied -2
9 901 C thorough 2005 6 SepPart -2
10 901 C thorough 2006 -1 ChldBrth -2
# ℹ 6,002,148 more rows
In small groups, discuss what’s happening when you use full_join()
, left_join()
, right_join()
, inner_join()
, and anti_join()
with the code below. Which is correct in this use case?
dplyr
: split-apply-combineMuch of the power of dplyr
functions lay in the split-apply-combine method
A given set of of data are:
group_by()
group_by()
function is the “split” of the methodmutate()
mutate()
is one of your “apply” functionsmutate()
, the resulting data frame will have the same number of rows you started withsummarize()
/ summarise()
summarize()
is one of your “apply” functionsfilter()
out only Big Five rowsmutate()
each observation so that values less than one are changed to NA
filter()
or drop_na()
summarize()
the values to get a composite score for each Big Five trait for each person in each year:Remember when I said that long format data are easier to clean. Let’s do that now.
soep_big5 <- soep_long |>
filter(category == "big5") |>
mutate(value = mapvalues(value, seq(-8,0), rep(NA, 9))) |>
drop_na(value) |>
group_by(Proc_SID, label, year) |>
summarize(value = mean(value)) |>
ungroup()
soep_big5
# A tibble: 161,432 × 4
Proc_SID label year value
<dbl> <chr> <dbl> <dbl>
1 901 A 2005 4.67
2 901 A 2009 4.33
3 901 A 2013 4.67
4 901 C 2005 5
5 901 C 2009 5
6 901 C 2013 5
7 901 E 2005 5
8 901 E 2009 5
9 901 E 2013 5
10 901 N 2005 4
# ℹ 161,422 more rows
Now let’s take care of the life event data:
1. filter()
out only life event rows
2. mutate()
each observation so that
NA
filter()
or drop_na()
summarize()
the values to get a sum
score for each event for each person across all years:soep_le <- soep_long |>
filter(category == "le") |>
mutate(value = mapvalues(value, seq(-8,1), c(rep(NA, 6), 0, NA, NA, 1))) |>
drop_na(value) |>
group_by(Proc_SID, label) |>
summarize(value = sum(value)) |>
ungroup()
soep_le
# A tibble: 253,363 × 3
Proc_SID label value
<dbl> <chr> <dbl>
1 901 ChldBrth 0
2 901 ChldMvOut 0
3 901 DadDied 0
4 901 Divorce 0
5 901 Married 0
6 901 MomDied 2
7 901 MoveIn 0
8 901 NewPart 0
9 901 PartDied 0
10 901 SepPart 0
# ℹ 253,353 more rows
Just for practice, now make your Big Five data frame wide, leaving the time variable (year) long
# A tibble: 40,504 × 7
Proc_SID year A C E N O
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 901 2005 4.67 5 5 4 4
2 901 2009 4.33 5 5 4.67 4
3 901 2013 4.67 5 5 4.33 3.33
4 1202 2005 4 4 6.67 5 5.67
5 2301 2005 5.67 5.67 5 4.33 4.33
6 2301 2009 5.67 4.5 4 5.33 5
7 2301 2013 4.67 5.33 5.33 3.67 5
8 2301 2006 NA 6 NA NA NA
9 2302 2005 4.67 4.67 4.67 3.67 5
10 2302 2009 4 5.5 5.33 3 4.33
# ℹ 40,494 more rows
label
and value
columns to reflect the category of the datasoep_clean <- soep_big5 |>
rename(trait = label, p_value = value) |>
inner_join(
soep_le |>
rename(le = label, le_value = value)
)
soep_clean
# A tibble: 1,577,725 × 6
Proc_SID trait year p_value le le_value
<dbl> <chr> <dbl> <dbl> <chr> <dbl>
1 901 A 2005 4.67 ChldBrth 0
2 901 A 2005 4.67 ChldMvOut 0
3 901 A 2005 4.67 DadDied 0
4 901 A 2005 4.67 Divorce 0
5 901 A 2005 4.67 Married 0
6 901 A 2005 4.67 MomDied 2
7 901 A 2005 4.67 MoveIn 0
8 901 A 2005 4.67 NewPart 0
9 901 A 2005 4.67 PartDied 0
10 901 A 2005 4.67 SepPart 0
# ℹ 1,577,715 more rows
How to approach writing functions? (broad recipe)
Three components of a function:
function()
and give it a name using the assignment operator <-
function()
arg1
, arg2
, arg3
, but we could have written:
function(x, y, z)
or function(Larry, Curly, Moe)
{}
) that follows function()
Some common tasks when working with survey data:
NA
values for a specific variableNA
for a specific variablenum_negative()
functionTask: Write function called num_negative()
df
(created below)Recommended steps:
sum(data_frame_name$var_name<0)
[1] "id" "age" "sibage" "parage"
[1] 17 15 -97 13 -97 12 -99 -97 16 16 -98 20 -99 20 11 20 12 17
[19] 19 17 -97 -99 12 13 11 15 20 14 -99 11 20 -98 11 -98 12 16
[37] 12 18 12 19 12 -97 20 17 11 19 19 12 -98 11 15 18 15 -98
[55] 15 19 -97 13 -98 16 13 12 16 19 -99 19 -98 13 -97 20 15 19
[73] 15 12 18 -99 18 -98 -98 -98 -97 12 14 19 -97 11 20 18 14 -99
[91] 15 20 -97 14 14 19 18 17 20 15
[1] 27
##Step 3: Apply function
num_missing()
functionIn survey data, negative values often refer to reason for missing values:
-8
refers to “didn’t take survey”-7
refers to “took survey, but didn’t answer this question”num_missing()
functionTask: Write function called num_negative()
x
: The variable (e.g., df$sibage
)miss_vals
: Vector of values you want to associate with “missing” variable
df$age
: -97,-98,-99
df$sibage
: -97,-98,-99
df$parage
: -4,-7,-8
Recommended steps:
sum(data_frame_name$var_name %in% c(-4,-5))
##Step 2: Write function
purrr
map()
map()
functions are the tidyverse alternative to for loops and chaotic lists with deep nesting structuresmap()
functions, unlike _apply()
functions can take any number of inputs, which mimics nested for
loopsmap()
functions can return any output type, including heterogeneous outputs (at least if you return it as a list)map()
inputsmap()
: one input, arguments are map(.x, .f)
map2()
: two inputs, arguments are map2(.x, y., .f)
pmap()
: any number of inputs, arguments are pmap(.l, .f)
.l
becuase this means we have to wrap inputs in a list()
purrr::map()
ouputspurrr::map()
:
map()
: outputs a listmap_chr()
: outputs a character vectormap_dbl()
: outputs a numeric vectormap_lgl()
: outputs a logical vectormap_int()
: outputs a integer vectormap_vec()
: outputs essentially any type of vectorpurrr
error handlingpurrr
to help with that:
possibly(.f, otherwise)
: returns whatever you ask it return with otherwise
when a .f call failssafely(.f)
: returns a list with the output, if successful, and errors, if unsuccessfulpurrr
list columnspurrr
is using list columns in nested data framestidyr::nest()
or tibble()
(where one column is a list itself)# A tibble: 160 × 4
trait year le data
<chr> <dbl> <chr> <list>
1 A 2005 ChldBrth <tibble [10,419 × 3]>
2 A 2005 ChldMvOut <tibble [10,419 × 3]>
3 A 2005 DadDied <tibble [10,419 × 3]>
4 A 2005 Divorce <tibble [10,419 × 3]>
5 A 2005 Married <tibble [10,419 × 3]>
6 A 2005 MomDied <tibble [10,419 × 3]>
7 A 2005 MoveIn <tibble [10,419 × 3]>
8 A 2005 NewPart <tibble [6,364 × 3]>
9 A 2005 PartDied <tibble [10,419 × 3]>
10 A 2005 SepPart <tibble [10,419 × 3]>
# ℹ 150 more rows
soep_nested
that creates a list column of the data split by trait and life event.mutate()
, create a new list column called model
that runs the following functionmutate()
, create a new list column called model
that runs the following functionlmer_fun <- function(d){
d <- d |>
mutate(wave = year - 2005) |>
group_by(Proc_SID) |>
filter(n() > 1)
m <- lmer(p_value ~ wave + le_value + le_value:wave + (1 + wave | Proc_SID), data = d)
return(m)
}
soep_nested <- soep_nested |>
mutate(model = map(data, lmer_fun))
soep_nested
# A tibble: 50 × 4
trait le data model
<chr> <chr> <list> <list>
1 A ChldBrth <tibble [30,248 × 4]> <lmerMod>
2 A ChldMvOut <tibble [30,248 × 4]> <lmerMod>
3 A DadDied <tibble [30,248 × 4]> <lmerMod>
4 A Divorce <tibble [30,248 × 4]> <lmerMod>
5 A Married <tibble [30,248 × 4]> <lmerMod>
6 A MomDied <tibble [30,248 × 4]> <lmerMod>
7 A MoveIn <tibble [30,248 × 4]> <lmerMod>
8 A NewPart <tibble [23,467 × 4]> <lmerMod>
9 A PartDied <tibble [30,248 × 4]> <lmerMod>
10 A SepPart <tibble [30,248 × 4]> <lmerMod>
# ℹ 40 more rows
npeople
# A tibble: 50 × 5
trait le data model npeople
<chr> <chr> <list> <list> <int>
1 A ChldBrth <tibble [30,248 × 4]> <lmerMod> 8563
2 A ChldMvOut <tibble [30,248 × 4]> <lmerMod> 8563
3 A DadDied <tibble [30,248 × 4]> <lmerMod> 8563
4 A Divorce <tibble [30,248 × 4]> <lmerMod> 8563
5 A Married <tibble [30,248 × 4]> <lmerMod> 8563
6 A MomDied <tibble [30,248 × 4]> <lmerMod> 8563
7 A MoveIn <tibble [30,248 × 4]> <lmerMod> 8563
8 A NewPart <tibble [23,467 × 4]> <lmerMod> 7359
9 A PartDied <tibble [30,248 × 4]> <lmerMod> 8563
10 A SepPart <tibble [30,248 × 4]> <lmerMod> 8563
# ℹ 40 more rows
tidy()
function from the broom.mixed
package to extract the coefficients from the model and their confidence intervals. Save it to the column “tidy”conf.int = T
to get the confidence intervals.f
function called in map()
can be just included as addition arguments (e.g., map(.x, .f, conf.int = T)
)unnest()
the tidy
columneffect == "fixed"
)term
trait
, le
, estimate
, conf.low
, and conf.high
columns onlypivot_wider()
by trait for estimate
, conf.low
, and conf.high
soep_tab <- soep_nested |>
select(-data, -model) |>
unnest(tidy) |>
filter(effect == "fixed" & grepl(":", term)) |>
mutate(across(c(estimate, conf.low, conf.high), \(x) round(x, 2))) |>
select(trait, le, estimate, conf.low, conf.high) |>
pivot_wider(
names_from = "trait"
, names_glue = "{trait}_{.value}"
, values_from = c(estimate, conf.low, conf.high)
)
soep_tab
# A tibble: 10 × 16
le A_estimate C_estimate E_estimate N_estimate O_estimate A_conf.low
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ChldBrth 0 0.01 0 0 0 0
2 ChldMvOut 0 0.01 0 0 0 -0.01
3 DadDied 0 0.02 0 0 -0.01 -0.01
4 Divorce 0.01 0.01 0.01 0 0.01 0
5 Married 0 0.02 0 0 0 0
6 MomDied 0 0.01 0 0 0.01 -0.01
7 MoveIn 0 0.01 0 0 0 0
8 NewPart 0.01 0.03 0 0 -0.01 0
9 PartDied 0 0.01 0.01 0 0.01 -0.01
10 SepPart 0 0.02 0.01 0 0 0
# ℹ 9 more variables: C_conf.low <dbl>, E_conf.low <dbl>, N_conf.low <dbl>,
# O_conf.low <dbl>, A_conf.high <dbl>, C_conf.high <dbl>, E_conf.high <dbl>,
# N_conf.high <dbl>, O_conf.high <dbl>
Use the function below to get model predictions
# A tibble: 50 × 7
trait le data model npeople tidy pred
<chr> <chr> <list> <list> <int> <list> <list>
1 A ChldBrth <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
2 A ChldMvOut <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
3 A DadDied <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
4 A Divorce <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
5 A Married <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
6 A MomDied <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
7 A MoveIn <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
8 A NewPart <tibble [23,467 × 4]> <lmerMod> 7359 <tibble> <df>
9 A PartDied <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
10 A SepPart <tibble [30,248 × 4]> <lmerMod> 8563 <tibble> <df>
# ℹ 40 more rows
unnest()
the tidy
columngroup_by()
life event and nest()
+ ungroup()
soep_pred
soep_pred <- soep_nested |>
select(-data, -model, -tidy) |>
unnest(pred) |>
group_by(trait) |>
nest() |>
ungroup()
soep_pred
# A tibble: 5 × 2
trait data
<chr> <list>
1 A <tibble [218,522 × 6]>
2 C <tibble [334,426 × 6]>
3 E <tibble [218,454 × 6]>
4 N <tibble [218,464 × 6]>
5 O <tibble [218,354 × 6]>
p
that contains spaghetti plotsspag_plot_fun <- function(d, trait){
set.seed(6)
d |>
group_by(le) |>
nest() |>
mutate(data = map(data, ~filter(., Proc_SID %in% sample(unique(.$Proc_SID), 100)))) |>
unnest(data) |>
ungroup() |>
mutate(le_value = ifelse(le_value > 1, 1, le_value)) |>
ggplot(aes(x = wave, y = pred)) +
geom_line(aes(group = Proc_SID, color = factor(le_value)), alpha = .3) +
geom_smooth(method = "lm", se = F, color = "darkblue") +
scale_color_manual(values = c("grey", "blue"), labels = c("No Event", "Event")) +
labs(x = "Wave", y = "Predicted Trait Levels", color = "Life Event", title = trait) +
facet_wrap(~le) +
theme_classic() +
theme(legend.position = c(.7, .1))
}
tidyverse
functions in chains to accomplish a bunch of goals simultaneouslytidy()
, and predict()
parts of that alone would have been 150 lines of code and introduced huge opportunities for errors!PSC 290 - Data Management and Cleaning