R for different modeling packages!)Can be any combination of the following:
We’re going to work with a subsample of data from multiple studies. These are simulated versions of data from my dissertation simulated to mirror the underlying structure of each study, including their drawbacks.
load(url("https://github.com/emoriebeck/psc290-data-viz-2022/blob/main/04-week4-associations/04-data/week4-data.RData?raw=true"))
pred_data# A tibble: 5,021 × 25
study o_value p_year SID p_value age gender grsWages parEdu race
<chr> <fct> <dbl> <chr> <dbl> <dbl> <fct> <dbl> <fct> <fct>
1 Study1 0 2005 61215 6.67 -29.9 1 1.02 2 0
2 Study1 0 2005 184965 0 -22.9 0 1.14 2 0
3 Study1 0 2005 488251 10 -3.92 1 0.717 1 0
4 Study1 0 2005 650779 7.22 -25.9 1 0.644 3 0
5 Study1 0 2005 969691 7.22 -0.925 1 0.812 2 0
6 Study1 0 2005 986687 6.11 14.1 0 1.76 2 0
7 Study1 0 2005 1054011 5.56 8.08 0 1.34 1 0
8 Study1 0 2005 1372251 7.78 5.08 1 0.842 1 0
9 Study1 0 2005 1496703 6.11 -23.9 0 1.42 2 0
10 Study1 0 2005 1897887 2.78 38.1 1 0.725 2 0
# ℹ 5,011 more rows
# ℹ 15 more variables: physhlthevnt <fct>, SRhealth <dbl>, smokes <fct>,
# alcohol <fct>, exercise <dbl>, BMI <dbl>, parDivorce <fct>, PhysFunc <fct>,
# religion <fct>, education <fct>, married <fct>, numKids <dbl>,
# parOccPrstg <dbl>, reliability <dbl>, predInt <dbl>
# A tibble: 5,021 × 25
study o_value p_year SID p_value age gender grsWages parEdu race
<chr> <fct> <dbl> <chr> <dbl> <dbl> <fct> <dbl> <fct> <fct>
1 Study1 0 2005 61215 6.67 -29.9 1 1.02 2 0
2 Study1 0 2005 184965 0 -22.9 0 1.14 2 0
3 Study1 0 2005 488251 10 -3.92 1 0.717 1 0
4 Study1 0 2005 650779 7.22 -25.9 1 0.644 3 0
5 Study1 0 2005 969691 7.22 -0.925 1 0.812 2 0
6 Study1 0 2005 986687 6.11 14.1 0 1.76 2 0
7 Study1 0 2005 1054011 5.56 8.08 0 1.34 1 0
8 Study1 0 2005 1372251 7.78 5.08 1 0.842 1 0
9 Study1 0 2005 1496703 6.11 -23.9 0 1.42 2 0
10 Study1 0 2005 1897887 2.78 38.1 1 0.725 2 0
# ℹ 5,011 more rows
# ℹ 15 more variables: physhlthevnt <fct>, SRhealth <dbl>, smokes <fct>,
# alcohol <fct>, exercise <dbl>, BMI <dbl>, parDivorce <fct>, PhysFunc <fct>,
# religion <fct>, education <fct>, married <fct>, numKids <dbl>,
# parOccPrstg <dbl>, reliability <dbl>, predInt <dbl>
p_value) and self-rated helath (SRhealth)# A tibble: 5,021 × 4
study SID p_value SRhealth
<chr> <chr> <dbl> <dbl>
1 Study1 61215 6.67 9.23
2 Study1 184965 0 7.5
3 Study1 488251 10 6.43
4 Study1 650779 7.22 6.92
5 Study1 969691 7.22 5.77
6 Study1 986687 6.11 6.84
7 Study1 1054011 5.56 6
8 Study1 1372251 7.78 3.62
9 Study1 1496703 6.11 6.59
10 Study1 1897887 2.78 5.62
# ℹ 5,011 more rows
Let’s look at a basic scatterplot of the association:
Let’s look at a basic scatterplot of the association with a trend line:
pred_data %>%
select(study, SID, p_value, SRhealth) %>%
ggplot(aes(x = p_value, y = SRhealth)) +
geom_point(shape = 21, fill = "grey80", color = "black", size = 2) +
geom_smooth(method = "lm", size = 3, se = F) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Self-Rated Health (POMP; 0-10)"
) +
theme_classic()But we have multiple studies, so we need to separate those out using facet_wrap()
pred_data %>%
select(study, SID, p_value, SRhealth) %>%
filter(!is.na(SRhealth)) %>%
ggplot(aes(x = p_value, y = SRhealth)) +
geom_point(shape = 21, fill = "grey80", color = "black", size = 2) +
scale_fill_manual(values = c("grey80", "seagreen4")) +
facet_wrap(~study) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Self-Rated Health (POMP; 0-10)"
) +
theme_classic()Let’s add a trend line again and change the alpha of the points to make them stand out a bit less:
pred_data %>%
select(study, SID, p_value, SRhealth) %>%
filter(!is.na(SRhealth)) %>%
ggplot(aes(x = p_value, y = SRhealth)) +
geom_point(shape = 21, fill = "grey80", color = "black", size = 2, alpha = .25) +
geom_smooth(method = "lm", size = 2, se = F) +
scale_fill_manual(values = c("grey80", "seagreen4")) +
facet_wrap(~study) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Self-Rated Health (POMP; 0-10)"
) +
theme_classic()We usually want to have some interval estimate around any average or other measure of central tendency, so we’ll set se = T in geom_smooth()
pred_data %>%
select(study, SID, p_value, SRhealth) %>%
filter(!is.na(SRhealth)) %>%
ggplot(aes(x = p_value, y = SRhealth)) +
geom_point(shape = 21, fill = "grey80", color = "black", size = 2, alpha = .25) +
geom_smooth(method = "lm", size = 1.5, se = T, color = "black") +
scale_fill_manual(values = c("grey80", "seagreen4")) +
facet_wrap(~study) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Self-Rated Health (POMP; 0-10)"
, title = "Conscientiousness -- Self-Rated Health Associations Across Samples"
) +
theme_classic()R packages for this (e.g., corrplot), but where’s the fun in that?All right, let’s estimate some correlation matrices for each sample:
# A tibble: 6 × 3
study data r
<chr> <list> <list>
1 Study1 <tibble [831 × 10]> <dbl [10 × 10]>
2 Study2 <tibble [1,000 × 10]> <dbl [10 × 10]>
3 Study3 <tibble [1,000 × 10]> <dbl [10 × 10]>
4 Study4 <tibble [574 × 10]> <dbl [10 × 10]>
5 Study5 <tibble [616 × 10]> <dbl [10 × 10]>
6 Study6 <tibble [1,000 × 10]> <dbl [10 × 10]>
The thing is that we know ggplot doesn’t like wide form data, which is what cor() produces
p_value age gender SRhealth smokes
p_value 1.000000000 -0.005224085 0.053627861 0.15917525 -0.069013463
age -0.005224085 1.000000000 -0.057243245 -0.22438335 -0.078788619
gender 0.053627861 -0.057243245 1.000000000 -0.03182278 0.022275557
SRhealth 0.159175251 -0.224383351 -0.031822781 1.00000000 -0.129241536
smokes -0.069013463 -0.078788619 0.022275557 -0.12924154 1.000000000
exercise 0.048576025 -0.361768736 0.061659017 0.34546038 -0.155018841
BMI -0.019741798 0.036151816 0.012217132 -0.09340105 -0.037713371
education 0.001465775 -0.173399716 -0.001603648 0.11008540 -0.096936630
parEdu 0.019871078 -0.374733606 0.055468171 0.08273023 0.005215303
mortality -0.089637524 0.627069166 -0.092109448 -0.31142292 0.035759332
exercise BMI education parEdu mortality
p_value 0.04857602 -0.01974180 0.001465775 0.019871078 -0.08963752
age -0.36176874 0.03615182 -0.173399716 -0.374733606 0.62706917
gender 0.06165902 0.01221713 -0.001603648 0.055468171 -0.09210945
SRhealth 0.34546038 -0.09340105 0.110085399 0.082730234 -0.31142292
smokes -0.15501884 -0.03771337 -0.096936630 0.005215303 0.03575933
exercise 1.00000000 -0.06217297 0.210204022 0.176766791 -0.32138385
BMI -0.06217297 1.00000000 -0.048914825 -0.075000576 0.01643219
education 0.21020402 -0.04891483 1.000000000 0.232321970 -0.17215791
parEdu 0.17676679 -0.07500058 0.232321970 1.000000000 -0.18796244
mortality -0.32138385 0.01643219 -0.172157913 -0.187962436 1.00000000
r_reshape_fun <- function(r){
coln <- colnames(r)
# remove lower tri and diagonal
r[lower.tri(r, diag = T)] <- NA
r %>% data.frame() %>%
rownames_to_column("V1") %>%
pivot_longer(
cols = -V1
, values_to = "r"
, names_to = "V2"
) %>%
mutate(V1 = factor(V1, coln)
, V2 = factor(V2, rev(coln)))
}
r_data <- r_data %>%
mutate(r = map(r, r_reshape_fun))
r_data$r[[1]]# A tibble: 100 × 3
V1 V2 r
<fct> <fct> <dbl>
1 p_value p_value NA
2 p_value age -0.00522
3 p_value gender 0.0536
4 p_value SRhealth 0.159
5 p_value smokes -0.0690
6 p_value exercise 0.0486
7 p_value BMI -0.0197
8 p_value education 0.00147
9 p_value parEdu 0.0199
10 p_value mortality -0.0896
# ℹ 90 more rows
This is, technically, a heat map, but I think we can do better!
Let’s add some intuitive colors using scale_fill_gradient2()
Do we need axis labels? Not really – let’s remove them and add fill and title labels:
r_data$r[[1]] %>%
ggplot(aes(x = V1, y = V2, fill = r)) +
geom_raster() +
scale_fill_gradient2(limits = c(-1,1)
, breaks = c(-1, -.5, 0, .5, 1)
, low = "blue", high = "red"
, mid = "white", na.value = "white") +
labs(
x = NULL
, y = NULL
, fill = "Zero-Order Correlation"
, title = "Zero-Order Correlations Among Variables in Sample 1"
) +
theme_minimal()Let’s fix the theme elements. So close!
r_data$r[[1]] %>%
ggplot(aes(x = V1, y = V2, fill = r)) +
geom_raster() +
scale_fill_gradient2(limits = c(-1,1)
, breaks = c(-1, -.5, 0, .5, 1)
, low = "blue", high = "red"
, mid = "white", na.value = "white") +
labs(
x = NULL
, y = NULL
, fill = "Zero-Order Correlation"
, title = "Zero-Order Correlations Among Variables"
, subtitle = "Sample 1"
) +
theme_classic() +
theme(
legend.position = "bottom"
, axis.text = element_text(face = "bold")
, axis.text.x = element_text(angle = 45, hjust = 1)
, plot.title = element_text(face = "bold", hjust = .5)
, plot.subtitle = element_text(face = "italic", hjust = .5)
, panel.background = element_rect(color = "black", linewidth = 1)
)And add text to the correlations using geom_text():
r_data$r[[1]] %>%
ggplot(aes(x = V1, y = V2, fill = r)) +
geom_raster() +
geom_text(aes(label = round(r, 2))) +
scale_fill_gradient2(limits = c(-1,1)
, breaks = c(-1, -.5, 0, .5, 1)
, low = "blue", high = "red"
, mid = "white", na.value = "white") +
labs(
x = NULL
, y = NULL
, fill = "Zero-Order Correlation"
, title = "Zero-Order Correlations Among Variables"
, subtitle = "Sample 1"
) +
theme_classic() +
theme(
legend.position = "bottom"
, axis.text = element_text(face = "bold")
, axis.text.x = element_text(angle = 45, hjust = 1)
, plot.title = element_text(face = "bold", hjust = .5)
, plot.subtitle = element_text(face = "italic", hjust = .5)
, panel.background = element_rect(color = "black", size = 1)
)A correlelogram is basically a heat map that uses size in addition to color. To practice your skills, you’re going to create a correllogram on your own. Using the following base-code, build a publication worthy plot.
Some hints and suggestions: - You’ll use geom_point() - Here’s all the ggplot shapes. I suggest checking out shape 21. - Be thoughtful about your legends - Be thoughtful about your axis labels and titles - Hint: you can borrow some code from the heat map
r_data$r[[1]] %>%
ggplot(aes(x = V1, y = V2, fill = r, size = abs(r))) +
geom_point(shape = 21) +
scale_fill_gradient2(limits = c(-1,1)
, breaks = c(-1, -.5, 0, .5, 1)
, low = "blue", high = "red"
, mid = "white", na.value = "white") +
scale_size_continuous(range = c(3,14)) +
labs(
x = NULL
, y = NULL
, fill = "Zero-Order\nCorrelation"
, title = "Zero-Order Correlations Among Variables"
, subtitle = "Sample 1"
) +
guides(size = "none") +
theme_classic() +
theme(
legend.position = "bottom"
, axis.text = element_text(face = "bold")
, axis.text.x = element_text(angle = 45, hjust = 1)
, plot.title = element_text(face = "bold", hjust = .5)
, plot.subtitle = element_text(face = "italic", hjust = .5)
, panel.background = element_rect(color = "black", size = 1)
)\[ logit(\frac{\pi}{1-\pi}) = b_0 + b_1*C_{ij} + \epsilon_{ij} \]
ds1 <- pred_data %>% filter(study == "Study1")
m1 <- glm(
o_value ~ p_value
, data = ds1
, family = binomial(link = "logit")
)
summary(m1)
Call:
glm(formula = o_value ~ p_value, family = binomial(link = "logit"),
data = ds1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.23213 0.25920 0.896 0.3705
p_value -0.09349 0.03632 -2.574 0.0101 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1117.4 on 830 degrees of freedom
Residual deviance: 1110.7 on 829 degrees of freedom
AIC: 1114.7
Number of Fisher Scoring iterations: 4
R are stored in lists or list-like objectsstr()
List of 30
$ coefficients : Named num [1:2] 0.2321 -0.0935
..- attr(*, "names")= chr [1:2] "(Intercept)" "p_value"
$ residuals : Named num [1:831] -1.68 -2.26 -1.5 -1.64 -1.64 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ fitted.values : Named num [1:831] 0.403 0.558 0.331 0.391 0.391 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ effects : Named num [1:831] 5.755 -2.574 -0.729 -0.78 -0.78 ...
..- attr(*, "names")= chr [1:831] "(Intercept)" "p_value" "" "" ...
$ R : num [1:2, 1:2] -14.1 0 -96.5 27.5
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "(Intercept)" "p_value"
.. ..$ : chr [1:2] "(Intercept)" "p_value"
$ rank : int 2
$ qr :List of 5
..$ qr : num [1:831, 1:2] -14.0555 0.0353 0.0335 0.0347 0.0347 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:831] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "(Intercept)" "p_value"
..$ rank : int 2
..$ qraux: num [1:2] 1.03 1.12
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-11
..- attr(*, "class")= chr "qr"
$ family :List of 13
..$ family : chr "binomial"
..$ link : chr "logit"
..$ linkfun :function (mu)
..$ linkinv :function (eta)
..$ variance :function (mu)
..$ dev.resids:function (y, mu, wt)
..$ aic :function (y, n, mu, wt, dev)
..$ mu.eta :function (eta)
..$ initialize: language { if (NCOL(y) == 1) { ...
..$ validmu :function (mu)
..$ valideta :function (eta)
..$ simulate :function (object, nsim)
..$ dispersion: num 1
..- attr(*, "class")= chr "family"
$ linear.predictors: Named num [1:831] -0.391 0.232 -0.703 -0.443 -0.443 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ deviance : num 1111
$ aic : num 1115
$ null.deviance : num 1117
$ iter : int 4
$ weights : Named num [1:831] 0.241 0.247 0.222 0.238 0.238 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ prior.weights : Named num [1:831] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ df.residual : int 829
$ df.null : int 830
$ y : Named num [1:831] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "names")= chr [1:831] "1" "2" "3" "4" ...
$ converged : logi TRUE
$ boundary : logi FALSE
$ model :'data.frame': 831 obs. of 2 variables:
..$ o_value: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
..$ p_value: num [1:831] 6.67 0 10 7.22 7.22 ...
..- attr(*, "terms")=Classes 'terms', 'formula' language o_value ~ p_value
.. .. ..- attr(*, "variables")= language list(o_value, p_value)
.. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. ..$ : chr [1:2] "o_value" "p_value"
.. .. .. .. ..$ : chr "p_value"
.. .. ..- attr(*, "term.labels")= chr "p_value"
.. .. ..- attr(*, "order")= int 1
.. .. ..- attr(*, "intercept")= int 1
.. .. ..- attr(*, "response")= int 1
.. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. .. ..- attr(*, "predvars")= language list(o_value, p_value)
.. .. ..- attr(*, "dataClasses")= Named chr [1:2] "factor" "numeric"
.. .. .. ..- attr(*, "names")= chr [1:2] "o_value" "p_value"
$ call : language glm(formula = o_value ~ p_value, family = binomial(link = "logit"), data = ds1)
$ formula :Class 'formula' language o_value ~ p_value
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
$ terms :Classes 'terms', 'formula' language o_value ~ p_value
.. ..- attr(*, "variables")= language list(o_value, p_value)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "o_value" "p_value"
.. .. .. ..$ : chr "p_value"
.. ..- attr(*, "term.labels")= chr "p_value"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(o_value, p_value)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "factor" "numeric"
.. .. ..- attr(*, "names")= chr [1:2] "o_value" "p_value"
$ data : tibble [831 × 25] (S3: tbl_df/tbl/data.frame)
..$ study : chr [1:831] "Study1" "Study1" "Study1" "Study1" ...
..$ o_value : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
..$ p_year : num [1:831] 2005 2005 2005 2005 2005 ...
..$ SID : chr [1:831] "61215" "184965" "488251" "650779" ...
..$ p_value : num [1:831] 6.67 0 10 7.22 7.22 ...
..$ age : num [1:831] -29.925 -22.925 -3.925 -25.925 -0.925 ...
..$ gender : Factor w/ 2 levels "0","1": 2 1 2 2 2 1 1 2 1 2 ...
..$ grsWages : num [1:831] 1.021 1.139 0.717 0.644 0.812 ...
..$ parEdu : Factor w/ 3 levels "1","2","3": 2 2 1 3 2 2 1 1 2 2 ...
..$ race : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
..$ physhlthevnt: Factor w/ 2 levels "0","1": 1 2 2 2 2 2 2 2 2 2 ...
..$ SRhealth : num [1:831] 9.23 7.5 6.43 6.92 5.77 ...
..$ smokes : Factor w/ 2 levels "0","1": 1 2 1 1 1 2 2 1 2 1 ...
..$ alcohol : Factor w/ 2 levels "0","1": NA NA NA NA NA NA NA NA NA NA ...
..$ exercise : num [1:831] 3.75 6.25 5 10 4.5 ...
..$ BMI : num [1:831] 2.02 1.84 1.67 1.89 3.29 ...
..$ parDivorce : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
..$ PhysFunc : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
..$ religion : Factor w/ 3 levels "0","1","2": 1 1 2 2 2 1 1 2 2 2 ...
..$ education : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
..$ married : Factor w/ 2 levels "0","1": 1 1 2 1 2 2 2 2 1 1 ...
..$ numKids : num [1:831] 0 0 0.588 0 1.765 ...
..$ parOccPrstg : num [1:831] 3.67 5.41 1.21 4.66 4.99 ...
..$ reliability : num [1:831] 0.511 0.511 0.511 0.511 0.511 ...
..$ predInt : num [1:831] 13 13 13 13 13 13 13 13 13 13 ...
$ offset : NULL
$ control :List of 3
..$ epsilon: num 1e-08
..$ maxit : num 25
..$ trace : logi FALSE
$ method : chr "glm.fit"
$ contrasts : NULL
$ xlevels : Named list()
- attr(*, "class")= chr [1:2] "glm" "lm"
broombroom package is great for working with models (and the broom.mixed add-on makes it even better)tidy()glance()augment()broom::tidy()dplyr/tidyr, tidy() is a close contender with purrr::map() functions as my most used functionR provides the summary(), coef(), etc. to extract various components of the modeldata.frames, which are core input to a lot of other R functions across packagestidy() provides a data frame with core model coefficients, inferential tests, etc. that be easily matched and merged across models, etc.broom::tidy()coef() function, but this still leaves us with the need to extract estimates of precision, like standard errors, confidence intervals, and more.broom::tidy()Enter broom::tidy()!
broom::tidy()Enter broom::tidy()!
Even better, we can easily get confidence intervals
broom::tidy()tidy() data frame of the parameter estimates for each sampletidy_ci <- function(m) tidy(m, conf.int = T)
nested_m <- pred_data %>%
group_by(study) %>%
nest() %>%
ungroup() %>%
mutate(
m = map(data
, ~glm(
o_value ~p_value
, data = .
, family = binomial(link = "logit")
)
)
, tidy = map(m, tidy_ci)
)
nested_m# A tibble: 6 × 4
study data m tidy
<chr> <list> <list> <list>
1 Study1 <tibble [831 × 24]> <glm> <tibble [2 × 7]>
2 Study2 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
3 Study3 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
4 Study4 <tibble [574 × 24]> <glm> <tibble [2 × 7]>
5 Study5 <tibble [616 × 24]> <glm> <tibble [2 × 7]>
6 Study6 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
broom::tidy()Now, we’ll drop the data and m columns that we don’t need and unnest() our tidy() data frames
# A tibble: 12 × 8
study term estimate std.error statistic p.value conf.low conf.high
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Study1 (Intercept) 0.232 0.259 0.896 0.370 -0.276 0.741
2 Study1 p_value -0.0935 0.0363 -2.57 0.0101 -0.165 -0.0225
3 Study2 (Intercept) 1.42 0.310 4.60 0.00000425 0.823 2.04
4 Study2 p_value -0.185 0.0392 -4.71 0.00000246 -0.262 -0.108
5 Study3 (Intercept) 1.32 0.328 4.03 0.0000565 0.685 1.97
6 Study3 p_value -0.166 0.0404 -4.11 0.0000390 -0.246 -0.0877
7 Study4 (Intercept) -1.62 0.464 -3.49 0.000482 -2.57 -0.741
8 Study4 p_value -0.0581 0.0898 -0.647 0.518 -0.232 0.121
9 Study5 (Intercept) -1.17 0.496 -2.36 0.0183 -2.16 -0.215
10 Study5 p_value -0.0391 0.0655 -0.597 0.550 -0.167 0.0905
11 Study6 (Intercept) 0.277 0.336 0.826 0.409 -0.380 0.937
12 Study6 p_value -0.0367 0.0437 -0.841 0.400 -0.123 0.0488
broom::tidy()Now these parameters from multiple models, we may want to plot!
broom::tidy()Almost, but we have two parameters for each model (Intercept and p_value), so let’s split those in a facet:
nested_m %>%
select(study, tidy) %>%
unnest(tidy) %>%
mutate_at(vars(estimate, conf.low, conf.high), exp) %>%
ggplot(
aes(y = study, x = estimate)
) +
geom_errorbar(
aes(xmin = conf.low, xmax = conf.high)
, position = position_dodge(width = .9)
, width = .1
) +
geom_point() +
facet_grid(~term) +
theme_classic()broom::tidy()We’ve got some work to do to make this an intuitive figure. Let’s:
broom::tidy()nested_m %>%
select(study, tidy) %>%
unnest(tidy) %>%
mutate_at(vars(estimate, conf.low, conf.high), exp) %>%
ggplot(
aes(y = study, x = estimate, fill = study)
) +
geom_vline(aes(xintercept = 1), linetype = "dashed") +
geom_errorbar(
aes(xmin = conf.low, xmax = conf.high)
, position = position_dodge(width = .9)
, width = .1
) +
geom_point(size = 3, shape = 22) +
labs(
x = "Estimate (CI) in OR"
, y = NULL
, title = "Conscientiousness was associated with mortality 50% of samples"
, subtitle = "Samples with lower mortality risk overall had fewer significant associations"
) +
facet_grid(~term, scales = "free") +
theme_classic() +
theme(
legend.position = "none"
, axis.text = element_text(face = "bold", size = rel(1.1))
, axis.title = element_text(face = "bold", size = rel(1.2))
, axis.line = element_blank()
, strip.text = element_text(face = "bold", size = rel(1.1), color = "white")
, strip.background = element_rect(fill = "black")
, plot.title = element_text(face = "bold", size = rel(1.1), hjust = .5)
, plot.subtitle = element_text(face = "italic", size = rel(1.1))
, panel.border = element_rect(color = "black", fill = NA, size = 1)
)broom::tidy()broom::glance()`glance() function brings some of these important ones into a single objectbroom::glance()`# A tibble: 1 × 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0503 0.0492 1.60 44.0 6.06e-11 1 -1571. 3148. 3162.
# ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
# A tibble: 1 × 10
estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.105 6.62 6.52 0.915 0.360 819. -0.120 0.329
# ℹ 2 more variables: method <chr>, alternative <chr>
broom::glance()`As before, we can do this with lots of models to compare across samples:
# A tibble: 6 × 4
study data m tidy
<chr> <list> <list> <list>
1 Study1 <tibble [831 × 24]> <glm> <tibble [2 × 7]>
2 Study2 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
3 Study3 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
4 Study4 <tibble [574 × 24]> <glm> <tibble [2 × 7]>
5 Study5 <tibble [616 × 24]> <glm> <tibble [2 × 7]>
6 Study6 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]>
broom::glance()`As before, we can do this with lots of models to compare across samples:
# A tibble: 6 × 5
study data m tidy glance
<chr> <list> <list> <list> <list>
1 Study1 <tibble [831 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
2 Study2 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
3 Study3 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
4 Study4 <tibble [574 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
5 Study5 <tibble [616 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
6 Study6 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
broom::glance()`As before, we can do this with lots of models to compare across samples
Now unnesting:
# A tibble: 6 × 9
study null.deviance df.null logLik AIC BIC deviance df.residual nobs
<chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 Study1 1117. 830 -555. 1115. 1124. 1111. 829 831
2 Study2 1386. 999 -682. 1367. 1377. 1363. 998 1000
3 Study3 1386. 999 -684. 1373. 1383. 1369. 998 1000
4 Study4 441. 573 -220. 445. 454. 441. 572 574
5 Study5 596. 615 -298. 600. 608. 596. 614 616
6 Study6 1386. 999 -693. 1390. 1399. 1386. 998 1000
broom::glance()`Realistically, this is the kind of info we table, but we can also merge it with info from tidy:
| study | term | estimate | std.error | statistic | p.value | conf.low | conf.high | null.deviance | df.null | logLik | AIC | BIC | deviance | df.residual | nobs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Study1 | (Intercept) | 0.23 | 0.26 | 0.90 | 0.37 | -0.28 | 0.74 | 1117.40 | 830 | -555.36 | 1114.73 | 1124.17 | 1110.73 | 829 | 831 |
| Study1 | p_value | -0.09 | 0.04 | -2.57 | 0.01 | -0.17 | -0.02 | 1117.40 | 830 | -555.36 | 1114.73 | 1124.17 | 1110.73 | 829 | 831 |
| Study2 | (Intercept) | 1.42 | 0.31 | 4.60 | 0.00 | 0.82 | 2.04 | 1386.29 | 999 | -681.62 | 1367.23 | 1377.05 | 1363.23 | 998 | 1000 |
| Study2 | p_value | -0.18 | 0.04 | -4.71 | 0.00 | -0.26 | -0.11 | 1386.29 | 999 | -681.62 | 1367.23 | 1377.05 | 1363.23 | 998 | 1000 |
| Study3 | (Intercept) | 1.32 | 0.33 | 4.03 | 0.00 | 0.68 | 1.97 | 1386.29 | 999 | -684.41 | 1372.82 | 1382.64 | 1368.82 | 998 | 1000 |
| Study3 | p_value | -0.17 | 0.04 | -4.11 | 0.00 | -0.25 | -0.09 | 1386.29 | 999 | -684.41 | 1372.82 | 1382.64 | 1368.82 | 998 | 1000 |
| Study4 | (Intercept) | -1.62 | 0.46 | -3.49 | 0.00 | -2.57 | -0.74 | 441.21 | 573 | -220.40 | 444.80 | 453.50 | 440.80 | 572 | 574 |
| Study4 | p_value | -0.06 | 0.09 | -0.65 | 0.52 | -0.23 | 0.12 | 441.21 | 573 | -220.40 | 444.80 | 453.50 | 440.80 | 572 | 574 |
| Study5 | (Intercept) | -1.17 | 0.50 | -2.36 | 0.02 | -2.16 | -0.21 | 596.00 | 615 | -297.82 | 599.64 | 608.49 | 595.64 | 614 | 616 |
| Study5 | p_value | -0.04 | 0.07 | -0.60 | 0.55 | -0.17 | 0.09 | 596.00 | 615 | -297.82 | 599.64 | 608.49 | 595.64 | 614 | 616 |
| Study6 | (Intercept) | 0.28 | 0.34 | 0.83 | 0.41 | -0.38 | 0.94 | 1386.29 | 999 | -692.79 | 1389.59 | 1399.40 | 1385.59 | 998 | 1000 |
| Study6 | p_value | -0.04 | 0.04 | -0.84 | 0.40 | -0.12 | 0.05 | 1386.29 | 999 | -692.79 | 1389.59 | 1399.40 | 1385.59 | 998 | 1000 |
broom::augment()Let’s keep working with our nested data frame. Remember, it looks like this:
# A tibble: 6 × 5
study data m tidy glance
<chr> <list> <list> <list> <list>
1 Study1 <tibble [831 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
2 Study2 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
3 Study3 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
4 Study4 <tibble [574 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
5 Study5 <tibble [616 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
6 Study6 <tibble [1,000 × 24]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
broom::augment()augment() let’s us add (augment) the raw data we feed the model based on the fitted model# A tibble: 6 × 5
study data m tidy glance
<chr> <list> <list> <list> <list>
1 Study1 <tibble [831 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
2 Study2 <tibble [1,000 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
3 Study3 <tibble [1,000 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
4 Study4 <tibble [574 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
5 Study5 <tibble [616 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
6 Study6 <tibble [1,000 × 31]> <glm> <tibble [2 × 7]> <tibble [1 × 8]>
broom::augment()glm:
.fitted: fitted / predicted value.se.fit: standard error.resid: observed - fitted.std.resd: standardized residuals.sigma: estimated residual SD when this obs is dropped from modelcooksd: Cooks distance (is this an outlier?)# A tibble: 831 × 9
o_value SID p_value .fitted .se.fit .resid .hat .sigma .cooksd
<fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 61215 6.67 -0.391 0.0715 -1.02 0.00123 1.16 0.000417
2 0 184965 0 0.232 0.259 -1.28 0.0166 1.16 0.0108
3 0 488251 10 -0.703 0.134 -0.897 0.00400 1.16 0.000998
4 0 650779 7.22 -0.443 0.0723 -0.996 0.00125 1.16 0.000401
5 0 969691 7.22 -0.443 0.0723 -0.996 0.00125 1.16 0.000401
6 0 986687 6.11 -0.339 0.0762 -1.04 0.00141 1.16 0.000504
7 0 1054011 5.56 -0.287 0.0855 -1.06 0.00179 1.16 0.000674
8 0 1372251 7.78 -0.495 0.0785 -0.976 0.00145 1.16 0.000444
9 0 1496703 6.11 -0.339 0.0762 -1.04 0.00141 1.16 0.000504
10 0 1897887 2.78 -0.0276 0.165 -1.17 0.00677 1.16 0.00334
# ℹ 821 more rows
broom::augment()For the most part, many of the checks with glm’s and lm’s are the same. But it’s a bit easier to wrap your head around lm(), so let’s switch to that:
nested_lm <- pred_data %>%
select(study, SID, p_value, age, SRhealth) %>%
drop_na() %>%
group_by(study) %>%
nest() %>%
ungroup() %>%
mutate(m = map(data, ~lm(SRhealth ~ p_value + age, data = .))
, tidy = map(m, tidy_ci)
, glance = map(m, glance)
, data = map2(m, data, augment, se_fit = T, interval = "confidence"))
nested_lm# A tibble: 6 × 5
study data m tidy glance
<chr> <list> <list> <list> <list>
1 Study1 <tibble [831 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
2 Study2 <tibble [996 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
3 Study3 <tibble [1,000 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
4 Study4 <tibble [574 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
5 Study5 <tibble [616 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
6 Study6 <tibble [1,000 × 13]> <lm> <tibble [3 × 7]> <tibble [1 × 12]>
broom::augment()lm:
.fitted: fitted / predicted value.se.fit: standard error.lower: lower bound of the confidence/prediction interval.upper: upper bound of the confidence/prediction interval.resid: observed - fitted.std.resd: standardized residuals.sigma: estimated residual SD when this obs is dropped from modelcooksd: Cooks distance (is this an outlier?)| SID | p_value | age | SRhealth | .fitted | .lower | .upper | .se.fit | .resid | .hat | .sigma | .cooksd | .std.resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 61215 | 6.67 | -29.92 | 9.23 | 7.21 | 6.98 | 7.43 | 0.11 | 2.03 | 0.01 | 1.58 | 0.00 | 1.28 |
| 184965 | 0.00 | -22.92 | 7.50 | 6.20 | 5.77 | 6.63 | 0.22 | 1.30 | 0.02 | 1.58 | 0.00 | 0.83 |
| 488251 | 10.00 | -3.92 | 6.43 | 7.20 | 6.99 | 7.41 | 0.11 | -0.78 | 0.00 | 1.58 | 0.00 | -0.49 |
| 650779 | 7.22 | -25.92 | 6.92 | 7.21 | 7.00 | 7.42 | 0.11 | -0.29 | 0.00 | 1.58 | 0.00 | -0.18 |
| 969691 | 7.22 | -0.92 | 5.77 | 6.78 | 6.66 | 6.91 | 0.06 | -1.02 | 0.00 | 1.58 | 0.00 | -0.64 |
| 986687 | 6.11 | 14.08 | 6.84 | 6.38 | 6.26 | 6.50 | 0.06 | 0.46 | 0.00 | 1.58 | 0.00 | 0.29 |
| 1054011 | 5.56 | 8.08 | 6.00 | 6.41 | 6.28 | 6.54 | 0.07 | -0.41 | 0.00 | 1.58 | 0.00 | -0.26 |
| 1372251 | 7.78 | 5.08 | 3.62 | 6.76 | 6.64 | 6.88 | 0.06 | -3.14 | 0.00 | 1.58 | 0.00 | -1.98 |
| 1496703 | 6.11 | -23.92 | 6.59 | 7.03 | 6.83 | 7.23 | 0.10 | -0.44 | 0.00 | 1.58 | 0.00 | -0.28 |
| 1897887 | 2.78 | 38.08 | 5.62 | 5.53 | 5.24 | 5.82 | 0.15 | 0.08 | 0.01 | 1.58 | 0.00 | 0.05 |
| 2157663 | 5.00 | -18.92 | 8.65 | 6.80 | 6.59 | 7.00 | 0.11 | 1.86 | 0.00 | 1.58 | 0.00 | 1.18 |
| 2190291 | 6.11 | -2.92 | 6.85 | 6.67 | 6.54 | 6.80 | 0.07 | 0.17 | 0.00 | 1.58 | 0.00 | 0.11 |
| 2652019 | 8.89 | -29.92 | 9.23 | 7.50 | 7.25 | 7.75 | 0.13 | 1.73 | 0.01 | 1.58 | 0.00 | 1.10 |
| 2814531 | 10.00 | 27.08 | 6.62 | 6.68 | 6.46 | 6.89 | 0.11 | -0.06 | 0.00 | 1.58 | 0.00 | -0.04 |
| 2818611 | 3.89 | 16.08 | 6.15 | 6.05 | 5.85 | 6.25 | 0.10 | 0.10 | 0.00 | 1.58 | 0.00 | 0.06 |
| 4739684 | 7.78 | -4.92 | 6.15 | 6.93 | 6.79 | 7.06 | 0.07 | -0.77 | 0.00 | 1.58 | 0.00 | -0.49 |
| 4781775 | 5.56 | -15.92 | 4.54 | 6.82 | 6.64 | 7.00 | 0.09 | -2.28 | 0.00 | 1.58 | 0.00 | -1.44 |
| 4832767 | 10.00 | 32.08 | 7.31 | 6.59 | 6.36 | 6.82 | 0.12 | 0.72 | 0.01 | 1.58 | 0.00 | 0.45 |
| 5038964 | 7.78 | -21.92 | 9.23 | 7.22 | 7.02 | 7.41 | 0.10 | 2.01 | 0.00 | 1.58 | 0.00 | 1.27 |
| 5127284 | 7.22 | -10.92 | 7.21 | 6.96 | 6.81 | 7.10 | 0.08 | 0.26 | 0.00 | 1.58 | 0.00 | 0.16 |
| 5848124 | 3.33 | -27.92 | 4.62 | 6.73 | 6.44 | 7.02 | 0.15 | -2.11 | 0.01 | 1.58 | 0.01 | -1.34 |
| 6160884 | 10.00 | 7.08 | 7.69 | 7.02 | 6.82 | 7.22 | 0.10 | 0.68 | 0.00 | 1.58 | 0.00 | 0.43 |
| 6549775 | 5.00 | -26.92 | 9.23 | 6.93 | 6.70 | 7.17 | 0.12 | 2.30 | 0.01 | 1.58 | 0.00 | 1.45 |
| 8445764 | 5.56 | -13.92 | 5.77 | 6.79 | 6.61 | 6.96 | 0.09 | -1.02 | 0.00 | 1.58 | 0.00 | -0.64 |
| 10485684 | 7.78 | -18.92 | 9.23 | 7.16 | 6.98 | 7.35 | 0.09 | 2.07 | 0.00 | 1.58 | 0.00 | 1.31 |
| 11934084 | 7.78 | -16.92 | 4.62 | 7.13 | 6.95 | 7.31 | 0.09 | -2.52 | 0.00 | 1.58 | 0.00 | -1.59 |
| 11974884 | 6.11 | -22.92 | 6.92 | 7.01 | 6.81 | 7.21 | 0.10 | -0.09 | 0.00 | 1.58 | 0.00 | -0.06 |
| 12818084 | 6.11 | -15.92 | 6.92 | 6.89 | 6.72 | 7.07 | 0.09 | 0.03 | 0.00 | 1.58 | 0.00 | 0.02 |
| 12831684 | 5.56 | -18.92 | 2.31 | 6.87 | 6.68 | 7.06 | 0.10 | -4.56 | 0.00 | 1.58 | 0.01 | -2.89 |
| 13913004 | 8.89 | -0.92 | 6.92 | 7.01 | 6.84 | 7.17 | 0.08 | -0.08 | 0.00 | 1.58 | 0.00 | -0.05 |
| 19080922 | 5.00 | -26.92 | 4.62 | 6.93 | 6.70 | 7.17 | 0.12 | -2.32 | 0.01 | 1.58 | 0.00 | -1.47 |
| 19978482 | 6.67 | -15.92 | 7.21 | 6.97 | 6.80 | 7.13 | 0.09 | 0.24 | 0.00 | 1.58 | 0.00 | 0.15 |
| 27560442 | 7.22 | 49.08 | 7.42 | 5.93 | 5.71 | 6.16 | 0.12 | 1.49 | 0.01 | 1.58 | 0.00 | 0.94 |
| 28254122 | 1.67 | -25.92 | 8.08 | 6.47 | 6.12 | 6.83 | 0.18 | 1.60 | 0.01 | 1.58 | 0.00 | 1.02 |
| 28777682 | 6.67 | -22.92 | 6.92 | 7.09 | 6.89 | 7.28 | 0.10 | -0.16 | 0.00 | 1.58 | 0.00 | -0.10 |
| 31409282 | 1.67 | 9.08 | 9.23 | 5.88 | 5.57 | 6.19 | 0.16 | 3.35 | 0.01 | 1.58 | 0.02 | 2.13 |
| 35421322 | 6.67 | -15.92 | 8.46 | 6.97 | 6.80 | 7.13 | 0.09 | 1.49 | 0.00 | 1.58 | 0.00 | 0.95 |
| 35904082 | 7.22 | -14.92 | 6.15 | 7.02 | 6.86 | 7.19 | 0.08 | -0.87 | 0.00 | 1.58 | 0.00 | -0.55 |
| 40086082 | 5.00 | -27.92 | 7.31 | 6.95 | 6.71 | 7.19 | 0.12 | 0.36 | 0.01 | 1.58 | 0.00 | 0.23 |
| 40092922 | 6.11 | -29.92 | 6.92 | 7.13 | 6.90 | 7.36 | 0.12 | -0.21 | 0.01 | 1.58 | 0.00 | -0.13 |
| 40419362 | 6.11 | -25.92 | 8.31 | 7.06 | 6.85 | 7.28 | 0.11 | 1.24 | 0.00 | 1.58 | 0.00 | 0.79 |
| 41840442 | 7.22 | -6.92 | 8.85 | 6.89 | 6.75 | 7.02 | 0.07 | 1.96 | 0.00 | 1.58 | 0.00 | 1.24 |
| 42309682 | 9.44 | 6.08 | 7.91 | 6.96 | 6.78 | 7.14 | 0.09 | 0.95 | 0.00 | 1.58 | 0.00 | 0.60 |
| 42948842 | 8.33 | 3.08 | 6.76 | 6.86 | 6.73 | 7.00 | 0.07 | -0.11 | 0.00 | 1.58 | 0.00 | -0.07 |
| 55447322 | 6.67 | -27.92 | 9.81 | 7.17 | 6.95 | 7.39 | 0.11 | 2.64 | 0.00 | 1.58 | 0.00 | 1.67 |
| 55576482 | 10.00 | -14.92 | 7.85 | 7.39 | 7.16 | 7.63 | 0.12 | 0.46 | 0.01 | 1.58 | 0.00 | 0.29 |
| 61261282 | 6.67 | -26.92 | 8.46 | 7.15 | 6.94 | 7.37 | 0.11 | 1.31 | 0.00 | 1.58 | 0.00 | 0.83 |
| 62124842 | 8.33 | 3.08 | 6.69 | 6.86 | 6.73 | 7.00 | 0.07 | -0.17 | 0.00 | 1.58 | 0.00 | -0.11 |
| 64164842 | 6.67 | 4.08 | 6.63 | 6.63 | 6.51 | 6.74 | 0.06 | 0.01 | 0.00 | 1.58 | 0.00 | 0.01 |
| 64919682 | 6.67 | 41.08 | 6.69 | 6.00 | 5.80 | 6.19 | 0.10 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 65076042 | 7.78 | 11.08 | 6.92 | 6.65 | 6.54 | 6.77 | 0.06 | 0.27 | 0.00 | 1.58 | 0.00 | 0.17 |
| 65545242 | 5.56 | 2.08 | 7.85 | 6.51 | 6.38 | 6.65 | 0.07 | 1.33 | 0.00 | 1.58 | 0.00 | 0.84 |
| 67680602 | 6.11 | -27.92 | 6.15 | 7.10 | 6.88 | 7.32 | 0.11 | -0.94 | 0.01 | 1.58 | 0.00 | -0.60 |
| 68295125 | 2.22 | 28.08 | 7.23 | 5.63 | 5.33 | 5.92 | 0.15 | 1.60 | 0.01 | 1.58 | 0.00 | 1.02 |
| 68433169 | 7.78 | 12.08 | 8.23 | 6.64 | 6.52 | 6.75 | 0.06 | 1.59 | 0.00 | 1.58 | 0.00 | 1.01 |
| 68441325 | 4.44 | 16.08 | 7.38 | 6.13 | 5.95 | 6.30 | 0.09 | 1.26 | 0.00 | 1.58 | 0.00 | 0.80 |
| 68571205 | 7.22 | -0.92 | 6.92 | 6.78 | 6.66 | 6.91 | 0.06 | 0.14 | 0.00 | 1.58 | 0.00 | 0.09 |
| 68629009 | 8.33 | -3.92 | 8.62 | 6.98 | 6.83 | 7.13 | 0.08 | 1.63 | 0.00 | 1.58 | 0.00 | 1.03 |
| 68942485 | 6.67 | 24.08 | 7.23 | 6.28 | 6.15 | 6.42 | 0.07 | 0.95 | 0.00 | 1.58 | 0.00 | 0.60 |
| 69338925 | 8.89 | -0.92 | 8.62 | 7.01 | 6.84 | 7.17 | 0.08 | 1.61 | 0.00 | 1.58 | 0.00 | 1.02 |
| 69436913 | 5.56 | -28.92 | 7.50 | 7.04 | 6.81 | 7.27 | 0.12 | 0.46 | 0.01 | 1.58 | 0.00 | 0.29 |
| 69657169 | 8.89 | -5.92 | 7.12 | 7.09 | 6.92 | 7.26 | 0.09 | 0.02 | 0.00 | 1.58 | 0.00 | 0.02 |
| 69706125 | 10.00 | -0.92 | 8.82 | 7.15 | 6.95 | 7.36 | 0.11 | 1.67 | 0.00 | 1.58 | 0.00 | 1.05 |
| 69831253 | 4.44 | -28.92 | 8.08 | 6.89 | 6.63 | 7.15 | 0.13 | 1.18 | 0.01 | 1.58 | 0.00 | 0.75 |
| 69865929 | 8.33 | -5.92 | 6.92 | 7.02 | 6.86 | 7.17 | 0.08 | -0.09 | 0.00 | 1.58 | 0.00 | -0.06 |
| 69909445 | 6.67 | 5.08 | 6.54 | 6.61 | 6.50 | 6.72 | 0.06 | -0.07 | 0.00 | 1.58 | 0.00 | -0.04 |
| 70127049 | 3.89 | 31.08 | 6.43 | 5.80 | 5.57 | 6.02 | 0.12 | 0.63 | 0.01 | 1.58 | 0.00 | 0.40 |
| 70216125 | 6.67 | 5.08 | 9.23 | 6.61 | 6.50 | 6.72 | 0.06 | 2.62 | 0.00 | 1.58 | 0.00 | 1.66 |
| 70483365 | 8.89 | 11.08 | 6.85 | 6.80 | 6.65 | 6.95 | 0.08 | 0.05 | 0.00 | 1.58 | 0.00 | 0.03 |
| 70622765 | 6.67 | 21.08 | 5.85 | 6.34 | 6.21 | 6.46 | 0.06 | -0.49 | 0.00 | 1.58 | 0.00 | -0.31 |
| 71047085 | 7.22 | -20.92 | 7.95 | 7.13 | 6.94 | 7.31 | 0.10 | 0.82 | 0.00 | 1.58 | 0.00 | 0.52 |
| 71148405 | 8.89 | -5.92 | 7.79 | 7.09 | 6.92 | 7.26 | 0.09 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 71434005 | 5.56 | -16.92 | 6.35 | 6.84 | 6.65 | 7.02 | 0.10 | -0.49 | 0.00 | 1.58 | 0.00 | -0.31 |
| 72039885 | 6.11 | 38.08 | 7.46 | 5.97 | 5.79 | 6.16 | 0.09 | 1.49 | 0.00 | 1.58 | 0.00 | 0.94 |
| 81612929 | 6.67 | 6.08 | 7.75 | 6.59 | 6.48 | 6.70 | 0.06 | 1.16 | 0.00 | 1.58 | 0.00 | 0.73 |
| 81889685 | 7.22 | -6.92 | 5.96 | 6.89 | 6.75 | 7.02 | 0.07 | -0.93 | 0.00 | 1.58 | 0.00 | -0.58 |
| 82042689 | 7.78 | 9.08 | 6.92 | 6.69 | 6.57 | 6.81 | 0.06 | 0.24 | 0.00 | 1.58 | 0.00 | 0.15 |
| 82241925 | 8.33 | 17.08 | 6.10 | 6.62 | 6.49 | 6.76 | 0.07 | -0.53 | 0.00 | 1.58 | 0.00 | -0.33 |
| 82335085 | 7.22 | 24.08 | 8.08 | 6.36 | 6.23 | 6.49 | 0.07 | 1.72 | 0.00 | 1.58 | 0.00 | 1.09 |
| 88939933 | 9.44 | -20.92 | 7.69 | 7.42 | 7.19 | 7.65 | 0.12 | 0.27 | 0.01 | 1.58 | 0.00 | 0.17 |
| 88984805 | 5.56 | -10.92 | 2.69 | 6.73 | 6.57 | 6.90 | 0.08 | -4.04 | 0.00 | 1.58 | 0.01 | -2.56 |
| 88984873 | 6.11 | -28.92 | 5.77 | 7.11 | 6.89 | 7.34 | 0.11 | -1.35 | 0.01 | 1.58 | 0.00 | -0.85 |
| 89001805 | 8.89 | -5.92 | 8.57 | 7.09 | 6.92 | 7.26 | 0.09 | 1.48 | 0.00 | 1.58 | 0.00 | 0.94 |
| 89096329 | 8.89 | -14.92 | 9.23 | 7.24 | 7.05 | 7.44 | 0.10 | 1.99 | 0.00 | 1.58 | 0.00 | 1.26 |
| 89099725 | 5.00 | -18.92 | 4.81 | 6.80 | 6.59 | 7.00 | 0.11 | -1.99 | 0.00 | 1.58 | 0.00 | -1.26 |
| 89271769 | 5.56 | -14.92 | 6.54 | 6.80 | 6.62 | 6.98 | 0.09 | -0.26 | 0.00 | 1.58 | 0.00 | -0.17 |
| 95214285 | 7.78 | 26.08 | 6.23 | 6.40 | 6.25 | 6.54 | 0.07 | -0.17 | 0.00 | 1.58 | 0.00 | -0.11 |
| 95328529 | 10.00 | 13.08 | 5.77 | 6.91 | 6.71 | 7.12 | 0.10 | -1.14 | 0.00 | 1.58 | 0.00 | -0.72 |
| 95756925 | 2.78 | 5.08 | 2.54 | 6.09 | 5.84 | 6.35 | 0.13 | -3.56 | 0.01 | 1.58 | 0.01 | -2.25 |
| 95905845 | 7.22 | -19.92 | 6.46 | 7.11 | 6.93 | 7.29 | 0.09 | -0.65 | 0.00 | 1.58 | 0.00 | -0.41 |
| 95970445 | 10.00 | -6.92 | 7.85 | 7.25 | 7.04 | 7.47 | 0.11 | 0.59 | 0.00 | 1.58 | 0.00 | 0.37 |
| 96077885 | 8.89 | -5.92 | 6.23 | 7.09 | 6.92 | 7.26 | 0.09 | -0.86 | 0.00 | 1.58 | 0.00 | -0.54 |
| 136065965 | 10.00 | -2.92 | 8.24 | 7.19 | 6.98 | 7.40 | 0.11 | 1.06 | 0.00 | 1.58 | 0.00 | 0.67 |
| 136102005 | 6.67 | 1.08 | 6.15 | 6.68 | 6.56 | 6.79 | 0.06 | -0.52 | 0.00 | 1.58 | 0.00 | -0.33 |
| 136162525 | 10.00 | 38.08 | 7.23 | 6.49 | 6.24 | 6.73 | 0.13 | 0.74 | 0.01 | 1.58 | 0.00 | 0.47 |
| 136176129 | 6.67 | 11.08 | 8.15 | 6.51 | 6.40 | 6.62 | 0.06 | 1.65 | 0.00 | 1.58 | 0.00 | 1.04 |
| 136205369 | 4.17 | 14.08 | 7.15 | 6.12 | 5.94 | 6.31 | 0.10 | 1.03 | 0.00 | 1.58 | 0.00 | 0.65 |
| 136208089 | 8.33 | 3.08 | 8.77 | 6.86 | 6.73 | 7.00 | 0.07 | 1.91 | 0.00 | 1.58 | 0.00 | 1.20 |
| 136301929 | 5.56 | 14.08 | 5.54 | 6.31 | 6.17 | 6.44 | 0.07 | -0.77 | 0.00 | 1.58 | 0.00 | -0.49 |
| 136631053 | 6.67 | -29.92 | 4.62 | 7.21 | 6.98 | 7.43 | 0.11 | -2.59 | 0.01 | 1.58 | 0.00 | -1.64 |
| 136634449 | 5.56 | 19.08 | 7.85 | 6.22 | 6.08 | 6.36 | 0.07 | 1.62 | 0.00 | 1.58 | 0.00 | 1.03 |
| 136738485 | 10.00 | 29.08 | 8.31 | 6.64 | 6.42 | 6.86 | 0.11 | 1.67 | 0.01 | 1.58 | 0.00 | 1.06 |
| 136875857 | 9.44 | -21.92 | 8.37 | 7.44 | 7.20 | 7.67 | 0.12 | 0.93 | 0.01 | 1.58 | 0.00 | 0.59 |
| 137173005 | 6.67 | 4.08 | 4.69 | 6.63 | 6.51 | 6.74 | 0.06 | -1.93 | 0.00 | 1.58 | 0.00 | -1.22 |
| 137268205 | 8.89 | 17.08 | 7.38 | 6.70 | 6.54 | 6.86 | 0.08 | 0.69 | 0.00 | 1.58 | 0.00 | 0.43 |
| 137321245 | 6.11 | 12.08 | 8.69 | 6.42 | 6.30 | 6.53 | 0.06 | 2.28 | 0.00 | 1.58 | 0.00 | 1.44 |
| 137697289 | 5.00 | 5.08 | 8.54 | 6.39 | 6.24 | 6.54 | 0.08 | 2.15 | 0.00 | 1.58 | 0.00 | 1.36 |
| 137818325 | 5.00 | -15.92 | 5.69 | 6.75 | 6.55 | 6.94 | 0.10 | -1.05 | 0.00 | 1.58 | 0.00 | -0.67 |
| 137922369 | 7.22 | -11.92 | 7.42 | 6.97 | 6.82 | 7.12 | 0.08 | 0.45 | 0.00 | 1.58 | 0.00 | 0.28 |
| 138273925 | 8.33 | -10.92 | 9.14 | 7.10 | 6.94 | 7.27 | 0.09 | 2.04 | 0.00 | 1.58 | 0.00 | 1.29 |
| 139070213 | 10.00 | 16.08 | 2.31 | 6.86 | 6.66 | 7.07 | 0.10 | -4.56 | 0.00 | 1.58 | 0.01 | -2.88 |
| 139176285 | 6.67 | -17.92 | 7.99 | 7.00 | 6.83 | 7.18 | 0.09 | 0.99 | 0.00 | 1.58 | 0.00 | 0.62 |
| 139204845 | 7.22 | 16.08 | 7.31 | 6.49 | 6.38 | 6.61 | 0.06 | 0.81 | 0.00 | 1.58 | 0.00 | 0.51 |
| 139217085 | 6.67 | -3.92 | 6.54 | 6.76 | 6.63 | 6.89 | 0.07 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 139281685 | 6.11 | -19.92 | 7.97 | 6.96 | 6.77 | 7.15 | 0.10 | 1.01 | 0.00 | 1.58 | 0.00 | 0.64 |
| 139621005 | 6.67 | -4.92 | 8.00 | 6.78 | 6.65 | 6.91 | 0.07 | 1.22 | 0.00 | 1.58 | 0.00 | 0.77 |
| 139621009 | 8.33 | -5.92 | 7.23 | 7.02 | 6.86 | 7.17 | 0.08 | 0.21 | 0.00 | 1.58 | 0.00 | 0.14 |
| 150375893 | 6.11 | -29.92 | 9.23 | 7.13 | 6.90 | 7.36 | 0.12 | 2.10 | 0.01 | 1.58 | 0.00 | 1.33 |
| 156758369 | 10.00 | 23.08 | 7.58 | 6.74 | 6.53 | 6.96 | 0.11 | 0.84 | 0.00 | 1.58 | 0.00 | 0.53 |
| 163227885 | 6.11 | -0.92 | 6.46 | 6.64 | 6.51 | 6.77 | 0.07 | -0.18 | 0.00 | 1.58 | 0.00 | -0.11 |
| 163442085 | 8.89 | 12.08 | 3.46 | 6.78 | 6.63 | 6.94 | 0.08 | -3.32 | 0.00 | 1.58 | 0.00 | -2.10 |
| 163564485 | 5.00 | -9.92 | 4.38 | 6.64 | 6.46 | 6.82 | 0.09 | -2.26 | 0.00 | 1.58 | 0.00 | -1.43 |
| 163986765 | 3.89 | 21.08 | 4.62 | 5.97 | 5.76 | 6.18 | 0.11 | -1.35 | 0.00 | 1.58 | 0.00 | -0.86 |
| 164155409 | 8.89 | 10.08 | 9.23 | 6.82 | 6.67 | 6.97 | 0.08 | 2.41 | 0.00 | 1.58 | 0.00 | 1.53 |
| 164172405 | 5.00 | -9.92 | 7.62 | 6.64 | 6.46 | 6.82 | 0.09 | 0.97 | 0.00 | 1.58 | 0.00 | 0.61 |
| 164260805 | 8.89 | -5.92 | 6.23 | 7.09 | 6.92 | 7.26 | 0.09 | -0.86 | 0.00 | 1.58 | 0.00 | -0.54 |
| 204012245 | 6.67 | 17.08 | 7.38 | 6.40 | 6.29 | 6.52 | 0.06 | 0.98 | 0.00 | 1.58 | 0.00 | 0.62 |
| 204204005 | 6.67 | 15.08 | 3.23 | 6.44 | 6.33 | 6.55 | 0.06 | -3.21 | 0.00 | 1.58 | 0.00 | -2.03 |
| 204450169 | 8.89 | 21.08 | 8.08 | 6.63 | 6.47 | 6.79 | 0.08 | 1.45 | 0.00 | 1.58 | 0.00 | 0.91 |
| 204450173 | 10.00 | -6.92 | 8.46 | 7.25 | 7.04 | 7.47 | 0.11 | 1.21 | 0.00 | 1.58 | 0.00 | 0.76 |
| 204522925 | 7.78 | 18.08 | 6.62 | 6.53 | 6.41 | 6.66 | 0.06 | 0.08 | 0.00 | 1.58 | 0.00 | 0.05 |
| 204552853 | 8.89 | -8.92 | 6.92 | 7.14 | 6.96 | 7.32 | 0.09 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 204586165 | 2.78 | 37.08 | 7.00 | 5.55 | 5.26 | 5.84 | 0.15 | 1.45 | 0.01 | 1.58 | 0.00 | 0.92 |
| 204833689 | 7.22 | -27.92 | 7.31 | 7.24 | 7.03 | 7.46 | 0.11 | 0.06 | 0.00 | 1.58 | 0.00 | 0.04 |
| 204945213 | 8.33 | -18.92 | 7.85 | 7.24 | 7.04 | 7.43 | 0.10 | 0.61 | 0.00 | 1.58 | 0.00 | 0.38 |
| 205085969 | 7.78 | 14.08 | 7.31 | 6.60 | 6.48 | 6.72 | 0.06 | 0.71 | 0.00 | 1.58 | 0.00 | 0.45 |
| 205104337 | 7.22 | -23.92 | 8.24 | 7.18 | 6.98 | 7.38 | 0.10 | 1.07 | 0.00 | 1.58 | 0.00 | 0.67 |
| 205359325 | 10.00 | 0.08 | 8.49 | 7.14 | 6.93 | 7.34 | 0.10 | 1.35 | 0.00 | 1.58 | 0.00 | 0.86 |
| 205551773 | 5.56 | -22.92 | 6.35 | 6.94 | 6.73 | 7.15 | 0.11 | -0.59 | 0.00 | 1.58 | 0.00 | -0.38 |
| 205695245 | 5.00 | 34.08 | 7.58 | 5.89 | 5.70 | 6.09 | 0.10 | 1.69 | 0.00 | 1.58 | 0.00 | 1.07 |
| 205712929 | 8.89 | -28.92 | 8.08 | 7.48 | 7.24 | 7.73 | 0.12 | 0.59 | 0.01 | 1.58 | 0.00 | 0.38 |
| 205946165 | 6.67 | -1.92 | 7.69 | 6.73 | 6.61 | 6.85 | 0.06 | 0.96 | 0.00 | 1.58 | 0.00 | 0.61 |
| 206106653 | 10.00 | -28.92 | 6.92 | 7.63 | 7.35 | 7.91 | 0.14 | -0.71 | 0.01 | 1.58 | 0.00 | -0.45 |
| 206116845 | 8.89 | -4.92 | 6.10 | 7.07 | 6.91 | 7.24 | 0.09 | -0.97 | 0.00 | 1.58 | 0.00 | -0.62 |
| 206143369 | 7.22 | -6.92 | 8.51 | 6.89 | 6.75 | 7.02 | 0.07 | 1.62 | 0.00 | 1.58 | 0.00 | 1.03 |
| 206453445 | 10.00 | 5.08 | 7.54 | 7.05 | 6.85 | 7.25 | 0.10 | 0.49 | 0.00 | 1.58 | 0.00 | 0.31 |
| 206477245 | 7.22 | 0.08 | 5.68 | 6.77 | 6.65 | 6.89 | 0.06 | -1.09 | 0.00 | 1.58 | 0.00 | -0.69 |
| 206777809 | 5.00 | 3.08 | 8.24 | 6.42 | 6.27 | 6.58 | 0.08 | 1.82 | 0.00 | 1.58 | 0.00 | 1.15 |
| 206794809 | 9.44 | -16.92 | 7.31 | 7.35 | 7.13 | 7.57 | 0.11 | -0.04 | 0.00 | 1.58 | 0.00 | -0.03 |
| 206799565 | 6.67 | -24.92 | 6.54 | 7.12 | 6.92 | 7.32 | 0.10 | -0.58 | 0.00 | 1.58 | 0.00 | -0.37 |
| 206842413 | 7.78 | -28.92 | 8.65 | 7.34 | 7.11 | 7.56 | 0.11 | 1.32 | 0.01 | 1.58 | 0.00 | 0.83 |
| 207166085 | 8.89 | -13.92 | 8.23 | 7.23 | 7.04 | 7.42 | 0.10 | 1.00 | 0.00 | 1.58 | 0.00 | 0.64 |
| 207238845 | 9.44 | -2.92 | 8.77 | 7.11 | 6.93 | 7.30 | 0.09 | 1.66 | 0.00 | 1.58 | 0.00 | 1.05 |
| 207301409 | 7.78 | -12.92 | 5.44 | 7.06 | 6.90 | 7.22 | 0.08 | -1.62 | 0.00 | 1.58 | 0.00 | -1.03 |
| 207448965 | 3.89 | -4.92 | 6.69 | 6.41 | 6.20 | 6.62 | 0.11 | 0.28 | 0.00 | 1.58 | 0.00 | 0.18 |
| 207561849 | 6.11 | -16.92 | 7.42 | 6.91 | 6.73 | 7.09 | 0.09 | 0.51 | 0.00 | 1.58 | 0.00 | 0.32 |
| 207793725 | 8.33 | -17.92 | 6.08 | 7.22 | 7.03 | 7.41 | 0.10 | -1.14 | 0.00 | 1.58 | 0.00 | -0.72 |
| 217739413 | 7.78 | -19.92 | 6.59 | 7.18 | 6.99 | 7.37 | 0.10 | -0.59 | 0.00 | 1.58 | 0.00 | -0.37 |
| 217799925 | 8.33 | 11.08 | 6.69 | 6.73 | 6.59 | 6.86 | 0.07 | -0.03 | 0.00 | 1.58 | 0.00 | -0.02 |
| 218184809 | 5.56 | 5.08 | 4.62 | 6.46 | 6.33 | 6.60 | 0.07 | -1.85 | 0.00 | 1.58 | 0.00 | -1.17 |
| 218398329 | 5.00 | -9.92 | 2.88 | 6.64 | 6.46 | 6.82 | 0.09 | -3.76 | 0.00 | 1.58 | 0.01 | -2.38 |
| 218472449 | 7.22 | -21.92 | 8.46 | 7.14 | 6.95 | 7.33 | 0.10 | 1.32 | 0.00 | 1.58 | 0.00 | 0.83 |
| 218496245 | 8.89 | 23.08 | 3.96 | 6.60 | 6.43 | 6.76 | 0.09 | -2.64 | 0.00 | 1.58 | 0.00 | -1.67 |
| 218575129 | 6.11 | 10.08 | 8.74 | 6.45 | 6.33 | 6.57 | 0.06 | 2.29 | 0.00 | 1.58 | 0.00 | 1.44 |
| 224406809 | 8.89 | 9.08 | 8.24 | 6.83 | 6.68 | 6.99 | 0.08 | 1.41 | 0.00 | 1.58 | 0.00 | 0.89 |
| 224431969 | 7.78 | 6.08 | 7.91 | 6.74 | 6.62 | 6.86 | 0.06 | 1.17 | 0.00 | 1.58 | 0.00 | 0.74 |
| 224438769 | 7.78 | 1.08 | 8.08 | 6.82 | 6.70 | 6.95 | 0.06 | 1.25 | 0.00 | 1.58 | 0.00 | 0.79 |
| 224629233 | 8.33 | -21.92 | 8.77 | 7.29 | 7.08 | 7.49 | 0.10 | 1.48 | 0.00 | 1.58 | 0.00 | 0.94 |
| 224835205 | 8.33 | 34.08 | 5.44 | 6.34 | 6.15 | 6.52 | 0.09 | -0.90 | 0.00 | 1.58 | 0.00 | -0.57 |
| 225064365 | 5.56 | 6.08 | 5.38 | 6.44 | 6.31 | 6.58 | 0.07 | -1.06 | 0.00 | 1.58 | 0.00 | -0.67 |
| 231336009 | 8.89 | -10.92 | 9.23 | 7.18 | 6.99 | 7.36 | 0.09 | 2.06 | 0.00 | 1.58 | 0.00 | 1.30 |
| 231421685 | 6.11 | 19.08 | 6.23 | 6.30 | 6.17 | 6.42 | 0.06 | -0.07 | 0.00 | 1.58 | 0.00 | -0.04 |
| 231577405 | 6.11 | 13.08 | 8.31 | 6.40 | 6.28 | 6.52 | 0.06 | 1.91 | 0.00 | 1.58 | 0.00 | 1.21 |
| 231665133 | 7.78 | -1.92 | 8.08 | 6.88 | 6.74 | 7.01 | 0.07 | 1.20 | 0.00 | 1.58 | 0.00 | 0.76 |
| 232047973 | 7.78 | -29.92 | 6.92 | 7.35 | 7.12 | 7.58 | 0.12 | -0.43 | 0.01 | 1.58 | 0.00 | -0.27 |
| 272639209 | 7.22 | 6.08 | 7.31 | 6.67 | 6.55 | 6.78 | 0.06 | 0.64 | 0.00 | 1.58 | 0.00 | 0.41 |
| 272854769 | 5.00 | 7.08 | 6.69 | 6.35 | 6.20 | 6.51 | 0.08 | 0.34 | 0.00 | 1.58 | 0.00 | 0.21 |
| 272871085 | 10.00 | 1.08 | 4.12 | 7.12 | 6.91 | 7.32 | 0.10 | -3.00 | 0.00 | 1.58 | 0.01 | -1.90 |
| 272934329 | 8.33 | 8.08 | 8.92 | 6.78 | 6.65 | 6.91 | 0.07 | 2.14 | 0.00 | 1.58 | 0.00 | 1.36 |
| 273243725 | 6.67 | 18.08 | 9.23 | 6.39 | 6.27 | 6.50 | 0.06 | 2.84 | 0.00 | 1.58 | 0.00 | 1.80 |
| 273463365 | 4.44 | 17.08 | 6.69 | 6.11 | 5.93 | 6.29 | 0.09 | 0.58 | 0.00 | 1.58 | 0.00 | 0.37 |
| 273469489 | 7.78 | -2.92 | 7.62 | 6.89 | 6.76 | 7.02 | 0.07 | 0.72 | 0.00 | 1.58 | 0.00 | 0.46 |
| 273931209 | 8.33 | 16.08 | 5.69 | 6.64 | 6.51 | 6.78 | 0.07 | -0.95 | 0.00 | 1.58 | 0.00 | -0.60 |
| 274240609 | 6.67 | -4.92 | 5.27 | 6.78 | 6.65 | 6.91 | 0.07 | -1.50 | 0.00 | 1.58 | 0.00 | -0.95 |
| 274416049 | 7.78 | 22.08 | 7.77 | 6.47 | 6.33 | 6.60 | 0.07 | 1.30 | 0.00 | 1.58 | 0.00 | 0.82 |
| 274648605 | 3.33 | -14.92 | 7.69 | 6.51 | 6.25 | 6.76 | 0.13 | 1.18 | 0.01 | 1.58 | 0.00 | 0.75 |
| 274847169 | 7.22 | -7.92 | 4.62 | 6.90 | 6.76 | 7.04 | 0.07 | -2.29 | 0.00 | 1.58 | 0.00 | -1.45 |
| 275010365 | 8.33 | -10.92 | 5.46 | 7.10 | 6.94 | 7.27 | 0.09 | -1.64 | 0.00 | 1.58 | 0.00 | -1.04 |
| 275120529 | 8.89 | -16.92 | 8.08 | 7.28 | 7.08 | 7.48 | 0.10 | 0.80 | 0.00 | 1.58 | 0.00 | 0.51 |
| 275210289 | 6.67 | 0.08 | 7.85 | 6.69 | 6.58 | 6.81 | 0.06 | 1.15 | 0.00 | 1.58 | 0.00 | 0.73 |
| 275336097 | 5.56 | -23.92 | 5.54 | 6.96 | 6.74 | 7.17 | 0.11 | -1.42 | 0.00 | 1.58 | 0.00 | -0.90 |
| 275661805 | 8.33 | -21.92 | 8.33 | 7.29 | 7.08 | 7.49 | 0.10 | 1.04 | 0.00 | 1.58 | 0.00 | 0.66 |
| 275812765 | 6.67 | -20.92 | 7.27 | 7.05 | 6.87 | 7.24 | 0.10 | 0.22 | 0.00 | 1.58 | 0.00 | 0.14 |
| 275876685 | 5.56 | -16.92 | 7.34 | 6.84 | 6.65 | 7.02 | 0.10 | 0.51 | 0.00 | 1.58 | 0.00 | 0.32 |
| 275930405 | 7.22 | -8.92 | 7.69 | 6.92 | 6.78 | 7.06 | 0.07 | 0.77 | 0.00 | 1.58 | 0.00 | 0.49 |
| 285701325 | 8.89 | 27.08 | 7.25 | 6.53 | 6.35 | 6.70 | 0.09 | 0.72 | 0.00 | 1.58 | 0.00 | 0.46 |
| 285744853 | 10.00 | -21.92 | 7.69 | 7.51 | 7.26 | 7.76 | 0.13 | 0.18 | 0.01 | 1.58 | 0.00 | 0.12 |
| 285844129 | 3.33 | 11.08 | 4.29 | 6.06 | 5.84 | 6.29 | 0.11 | -1.78 | 0.01 | 1.58 | 0.00 | -1.13 |
| 286191605 | 10.00 | 4.08 | 6.73 | 7.07 | 6.87 | 7.27 | 0.10 | -0.34 | 0.00 | 1.58 | 0.00 | -0.21 |
| 286303129 | 10.00 | -1.92 | 6.26 | 7.17 | 6.96 | 7.38 | 0.11 | -0.91 | 0.00 | 1.58 | 0.00 | -0.57 |
| 286407169 | 6.67 | -17.92 | 6.92 | 7.00 | 6.83 | 7.18 | 0.09 | -0.08 | 0.00 | 1.58 | 0.00 | -0.05 |
| 292975969 | 10.00 | 19.08 | 6.15 | 6.81 | 6.61 | 7.02 | 0.11 | -0.66 | 0.00 | 1.58 | 0.00 | -0.42 |
| 293086125 | 7.78 | -6.92 | 7.58 | 6.96 | 6.82 | 7.10 | 0.07 | 0.62 | 0.00 | 1.58 | 0.00 | 0.39 |
| 293152765 | 6.11 | 20.08 | 7.31 | 6.28 | 6.15 | 6.41 | 0.07 | 1.03 | 0.00 | 1.58 | 0.00 | 0.65 |
| 299308129 | 10.00 | 5.08 | 4.85 | 7.05 | 6.85 | 7.25 | 0.10 | -2.20 | 0.00 | 1.58 | 0.00 | -1.39 |
| 299308141 | 6.11 | -26.92 | 9.23 | 7.08 | 6.86 | 7.30 | 0.11 | 2.15 | 0.00 | 1.58 | 0.00 | 1.36 |
| 299310849 | 5.56 | -5.92 | 7.15 | 6.65 | 6.50 | 6.80 | 0.08 | 0.50 | 0.00 | 1.58 | 0.00 | 0.32 |
| 299316965 | 10.00 | 20.08 | 8.77 | 6.79 | 6.59 | 7.00 | 0.11 | 1.97 | 0.00 | 1.58 | 0.00 | 1.25 |
| 299653569 | 7.22 | -16.92 | 9.23 | 7.06 | 6.89 | 7.23 | 0.09 | 2.17 | 0.00 | 1.58 | 0.00 | 1.37 |
| 300162885 | 10.00 | -6.92 | 7.38 | 7.25 | 7.04 | 7.47 | 0.11 | 0.13 | 0.00 | 1.58 | 0.00 | 0.08 |
| 300166965 | 8.33 | -26.92 | 6.35 | 7.37 | 7.15 | 7.60 | 0.11 | -1.03 | 0.01 | 1.58 | 0.00 | -0.65 |
| 340124445 | 8.89 | 9.08 | 6.77 | 6.83 | 6.68 | 6.99 | 0.08 | -0.07 | 0.00 | 1.58 | 0.00 | -0.04 |
| 340214205 | 8.33 | 36.08 | 7.08 | 6.30 | 6.11 | 6.49 | 0.10 | 0.78 | 0.00 | 1.58 | 0.00 | 0.49 |
| 340397805 | 5.56 | 19.08 | 6.69 | 6.22 | 6.08 | 6.36 | 0.07 | 0.47 | 0.00 | 1.58 | 0.00 | 0.30 |
| 340480089 | 8.33 | 8.08 | 7.15 | 6.78 | 6.65 | 6.91 | 0.07 | 0.38 | 0.00 | 1.58 | 0.00 | 0.24 |
| 340505245 | 7.78 | 36.08 | 8.92 | 6.23 | 6.05 | 6.41 | 0.09 | 2.70 | 0.00 | 1.58 | 0.00 | 1.70 |
| 340603853 | 10.00 | -7.92 | 6.92 | 7.27 | 7.05 | 7.49 | 0.11 | -0.35 | 0.00 | 1.58 | 0.00 | -0.22 |
| 340826205 | 7.78 | 11.08 | 6.51 | 6.65 | 6.54 | 6.77 | 0.06 | -0.14 | 0.00 | 1.58 | 0.00 | -0.09 |
| 341005049 | 8.89 | 5.08 | 6.62 | 6.90 | 6.75 | 7.06 | 0.08 | -0.29 | 0.00 | 1.58 | 0.00 | -0.18 |
| 341005725 | 7.22 | 16.08 | 6.08 | 6.49 | 6.38 | 6.61 | 0.06 | -0.42 | 0.00 | 1.58 | 0.00 | -0.26 |
| 341090045 | 7.78 | 16.08 | 7.92 | 6.57 | 6.45 | 6.69 | 0.06 | 1.35 | 0.00 | 1.58 | 0.00 | 0.86 |
| 341169605 | 8.33 | -2.92 | 6.46 | 6.97 | 6.82 | 7.11 | 0.07 | -0.50 | 0.00 | 1.58 | 0.00 | -0.32 |
| 341575569 | 6.11 | -7.92 | 7.87 | 6.76 | 6.61 | 6.90 | 0.07 | 1.11 | 0.00 | 1.58 | 0.00 | 0.70 |
| 341930529 | 5.56 | -1.92 | 9.23 | 6.58 | 6.44 | 6.72 | 0.07 | 2.65 | 0.00 | 1.58 | 0.00 | 1.68 |
| 341946849 | 10.00 | 10.08 | 5.98 | 6.96 | 6.76 | 7.17 | 0.10 | -0.99 | 0.00 | 1.58 | 0.00 | -0.62 |
| 342417413 | 7.22 | -12.92 | 6.06 | 6.99 | 6.83 | 7.15 | 0.08 | -0.93 | 0.00 | 1.58 | 0.00 | -0.59 |
| 342928769 | 6.67 | -20.92 | 6.35 | 7.05 | 6.87 | 7.24 | 0.10 | -0.71 | 0.00 | 1.58 | 0.00 | -0.45 |
| 343063413 | 6.11 | -27.92 | 7.69 | 7.10 | 6.88 | 7.32 | 0.11 | 0.59 | 0.01 | 1.58 | 0.00 | 0.38 |
| 343189889 | 6.11 | -19.92 | 2.31 | 6.96 | 6.77 | 7.15 | 0.10 | -4.65 | 0.00 | 1.58 | 0.01 | -2.94 |
| 343292569 | 7.22 | 28.08 | 7.01 | 6.29 | 6.15 | 6.43 | 0.07 | 0.72 | 0.00 | 1.58 | 0.00 | 0.45 |
| 343323849 | 8.89 | 12.08 | 6.85 | 6.78 | 6.63 | 6.94 | 0.08 | 0.06 | 0.00 | 1.58 | 0.00 | 0.04 |
| 354084165 | 6.11 | -3.92 | 7.12 | 6.69 | 6.55 | 6.82 | 0.07 | 0.43 | 0.00 | 1.58 | 0.00 | 0.27 |
| 354128369 | 8.89 | 22.08 | 5.93 | 6.61 | 6.45 | 6.78 | 0.08 | -0.68 | 0.00 | 1.58 | 0.00 | -0.43 |
| 361072529 | 7.78 | -20.92 | 9.23 | 7.20 | 7.01 | 7.39 | 0.10 | 2.03 | 0.00 | 1.58 | 0.00 | 1.29 |
| 361248645 | 3.89 | -6.92 | 7.75 | 6.45 | 6.23 | 6.66 | 0.11 | 1.30 | 0.00 | 1.58 | 0.00 | 0.82 |
| 361303045 | 3.33 | -14.92 | 6.76 | 6.51 | 6.25 | 6.76 | 0.13 | 0.25 | 0.01 | 1.58 | 0.00 | 0.16 |
| 367552253 | 7.22 | -29.92 | 0.00 | 7.28 | 7.05 | 7.50 | 0.11 | -7.28 | 0.01 | 1.56 | 0.04 | -4.61 |
| 367642009 | 9.44 | -0.92 | 8.31 | 7.08 | 6.90 | 7.26 | 0.09 | 1.23 | 0.00 | 1.58 | 0.00 | 0.78 |
| 368104409 | 5.56 | 24.08 | 3.92 | 6.14 | 5.99 | 6.29 | 0.08 | -2.21 | 0.00 | 1.58 | 0.00 | -1.40 |
| 368322005 | 6.11 | -11.92 | 8.31 | 6.82 | 6.67 | 6.98 | 0.08 | 1.48 | 0.00 | 1.58 | 0.00 | 0.94 |
| 408255005 | 6.67 | 10.08 | 7.00 | 6.52 | 6.41 | 6.63 | 0.06 | 0.48 | 0.00 | 1.58 | 0.00 | 0.30 |
| 408306693 | 6.67 | -25.92 | 6.69 | 7.14 | 6.93 | 7.34 | 0.11 | -0.44 | 0.00 | 1.58 | 0.00 | -0.28 |
| 408420925 | 5.56 | 13.08 | 6.62 | 6.33 | 6.19 | 6.46 | 0.07 | 0.29 | 0.00 | 1.58 | 0.00 | 0.18 |
| 408565769 | 6.67 | 18.08 | 7.54 | 6.39 | 6.27 | 6.50 | 0.06 | 1.15 | 0.00 | 1.58 | 0.00 | 0.73 |
| 408811929 | 5.56 | 14.08 | 3.23 | 6.31 | 6.17 | 6.44 | 0.07 | -3.08 | 0.00 | 1.58 | 0.00 | -1.94 |
| 408869725 | 6.67 | -1.92 | 7.46 | 6.73 | 6.61 | 6.85 | 0.06 | 0.73 | 0.00 | 1.58 | 0.00 | 0.46 |
| 408879245 | 10.00 | 16.08 | 5.93 | 6.86 | 6.66 | 7.07 | 0.10 | -0.93 | 0.00 | 1.58 | 0.00 | -0.59 |
| 408982605 | 8.89 | -6.92 | 7.00 | 7.11 | 6.93 | 7.28 | 0.09 | -0.11 | 0.00 | 1.58 | 0.00 | -0.07 |
| 409253381 | 4.44 | -29.92 | 6.92 | 6.91 | 6.65 | 7.17 | 0.13 | 0.01 | 0.01 | 1.58 | 0.00 | 0.01 |
| 409379045 | 4.44 | 11.08 | 7.15 | 6.21 | 6.04 | 6.39 | 0.09 | 0.94 | 0.00 | 1.58 | 0.00 | 0.60 |
| 409513689 | 6.67 | -5.92 | 7.01 | 6.80 | 6.66 | 6.93 | 0.07 | 0.22 | 0.00 | 1.58 | 0.00 | 0.14 |
| 409594605 | 5.56 | -4.92 | 8.31 | 6.63 | 6.48 | 6.78 | 0.08 | 1.68 | 0.00 | 1.58 | 0.00 | 1.06 |
| 409960449 | 7.78 | -12.92 | 6.06 | 7.06 | 6.90 | 7.22 | 0.08 | -1.00 | 0.00 | 1.58 | 0.00 | -0.64 |
| 409963165 | 8.33 | -9.92 | 7.23 | 7.09 | 6.92 | 7.25 | 0.08 | 0.15 | 0.00 | 1.58 | 0.00 | 0.09 |
| 410160433 | 6.67 | -24.92 | 7.88 | 7.12 | 6.92 | 7.32 | 0.10 | 0.76 | 0.00 | 1.58 | 0.00 | 0.48 |
| 410214089 | 8.33 | -1.92 | 9.08 | 6.95 | 6.80 | 7.09 | 0.07 | 2.13 | 0.00 | 1.58 | 0.00 | 1.35 |
| 410584689 | 7.22 | -10.92 | 8.33 | 6.96 | 6.81 | 7.10 | 0.08 | 1.38 | 0.00 | 1.58 | 0.00 | 0.87 |
| 410636373 | 6.11 | 6.08 | 8.41 | 6.52 | 6.40 | 6.64 | 0.06 | 1.89 | 0.00 | 1.58 | 0.00 | 1.19 |
| 410830165 | 8.89 | -8.92 | 7.92 | 7.14 | 6.96 | 7.32 | 0.09 | 0.78 | 0.00 | 1.58 | 0.00 | 0.49 |
| 411298005 | 5.00 | -5.92 | 7.38 | 6.58 | 6.41 | 6.75 | 0.09 | 0.81 | 0.00 | 1.58 | 0.00 | 0.51 |
| 411345605 | 8.89 | -16.92 | 6.76 | 7.28 | 7.08 | 7.48 | 0.10 | -0.52 | 0.00 | 1.58 | 0.00 | -0.33 |
| 411568649 | 8.33 | -10.92 | 7.08 | 7.10 | 6.94 | 7.27 | 0.09 | -0.03 | 0.00 | 1.58 | 0.00 | -0.02 |
| 411578165 | 6.67 | -11.92 | 6.62 | 6.90 | 6.75 | 7.05 | 0.08 | -0.28 | 0.00 | 1.58 | 0.00 | -0.18 |
| 411693085 | 4.44 | -7.92 | 6.54 | 6.54 | 6.34 | 6.73 | 0.10 | 0.00 | 0.00 | 1.58 | 0.00 | 0.00 |
| 421640805 | 10.00 | 32.08 | 6.15 | 6.59 | 6.36 | 6.82 | 0.12 | -0.44 | 0.01 | 1.58 | 0.00 | -0.28 |
| 421726485 | 5.56 | 13.08 | 3.46 | 6.33 | 6.19 | 6.46 | 0.07 | -2.86 | 0.00 | 1.58 | 0.00 | -1.81 |
| 422010049 | 5.00 | -9.92 | 6.92 | 6.64 | 6.46 | 6.82 | 0.09 | 0.28 | 0.00 | 1.58 | 0.00 | 0.18 |
| 422067173 | 5.00 | -26.92 | 5.38 | 6.93 | 6.70 | 7.17 | 0.12 | -1.55 | 0.01 | 1.58 | 0.00 | -0.98 |
| 422150129 | 8.33 | -1.92 | 7.25 | 6.95 | 6.80 | 7.09 | 0.07 | 0.30 | 0.00 | 1.58 | 0.00 | 0.19 |
| 422325565 | 8.33 | -2.92 | 8.24 | 6.97 | 6.82 | 7.11 | 0.07 | 1.28 | 0.00 | 1.58 | 0.00 | 0.81 |
| 422409885 | 8.89 | 17.08 | 8.57 | 6.70 | 6.54 | 6.86 | 0.08 | 1.87 | 0.00 | 1.58 | 0.00 | 1.18 |
| 422447289 | 3.89 | 29.08 | 9.23 | 5.83 | 5.61 | 6.05 | 0.11 | 3.40 | 0.01 | 1.58 | 0.01 | 2.15 |
| 422571045 | 6.11 | -26.92 | 7.79 | 7.08 | 6.86 | 7.30 | 0.11 | 0.71 | 0.00 | 1.58 | 0.00 | 0.45 |
| 428476165 | 8.89 | 23.08 | 6.92 | 6.60 | 6.43 | 6.76 | 0.09 | 0.33 | 0.00 | 1.58 | 0.00 | 0.21 |
| 428536693 | 6.67 | -25.92 | 6.23 | 7.14 | 6.93 | 7.34 | 0.11 | -0.91 | 0.00 | 1.58 | 0.00 | -0.57 |
| 428621009 | 5.56 | 18.08 | 4.45 | 6.24 | 6.10 | 6.38 | 0.07 | -1.79 | 0.00 | 1.58 | 0.00 | -1.13 |
| 428649577 | 6.67 | -29.92 | 9.23 | 7.21 | 6.98 | 7.43 | 0.11 | 2.03 | 0.01 | 1.58 | 0.00 | 1.28 |
| 428820925 | 10.00 | -7.92 | 5.77 | 7.27 | 7.05 | 7.49 | 0.11 | -1.50 | 0.00 | 1.58 | 0.00 | -0.95 |
| 428923609 | 6.11 | 21.08 | 5.27 | 6.26 | 6.13 | 6.39 | 0.07 | -0.99 | 0.00 | 1.58 | 0.00 | -0.62 |
| 429228929 | 5.56 | -5.92 | 9.23 | 6.65 | 6.50 | 6.80 | 0.08 | 2.58 | 0.00 | 1.58 | 0.00 | 1.63 |
| 435301325 | 8.33 | 24.08 | 6.23 | 6.51 | 6.35 | 6.66 | 0.08 | -0.27 | 0.00 | 1.58 | 0.00 | -0.17 |
| 435357089 | 6.67 | 26.08 | 6.23 | 6.25 | 6.11 | 6.39 | 0.07 | -0.02 | 0.00 | 1.58 | 0.00 | -0.01 |
| 435463845 | 8.89 | 19.08 | 8.31 | 6.66 | 6.50 | 6.82 | 0.08 | 1.64 | 0.00 | 1.58 | 0.00 | 1.04 |
| 435748085 | 5.00 | -1.92 | 7.15 | 6.51 | 6.35 | 6.67 | 0.08 | 0.65 | 0.00 | 1.58 | 0.00 | 0.41 |
| 435936445 | 7.78 | -10.92 | 9.00 | 7.03 | 6.87 | 7.18 | 0.08 | 1.97 | 0.00 | 1.58 | 0.00 | 1.25 |
| 435955485 | 10.00 | -4.92 | 4.85 | 7.22 | 7.01 | 7.43 | 0.11 | -2.37 | 0.00 | 1.58 | 0.00 | -1.50 |
| 435960925 | 7.78 | -18.92 | 8.77 | 7.16 | 6.98 | 7.35 | 0.09 | 1.60 | 0.00 | 1.58 | 0.00 | 1.01 |
| 436054085 | 5.56 | -5.92 | 8.85 | 6.65 | 6.50 | 6.80 | 0.08 | 2.20 | 0.00 | 1.58 | 0.00 | 1.39 |
| 476032645 | 8.89 | 8.08 | 6.00 | 6.85 | 6.70 | 7.00 | 0.08 | -0.85 | 0.00 | 1.58 | 0.00 | -0.54 |
| 476289689 | 8.89 | 4.08 | 8.62 | 6.92 | 6.77 | 7.07 | 0.08 | 1.70 | 0.00 | 1.58 | 0.00 | 1.07 |
| 476371285 | 5.56 | 0.08 | 7.31 | 6.55 | 6.41 | 6.69 | 0.07 | 0.76 | 0.00 | 1.58 | 0.00 | 0.48 |
| 476651445 | 9.44 | -3.92 | 5.85 | 7.13 | 6.94 | 7.32 | 0.10 | -1.28 | 0.00 | 1.58 | 0.00 | -0.81 |
| 476950645 | 10.00 | 18.08 | 7.54 | 6.83 | 6.62 | 7.03 | 0.10 | 0.71 | 0.00 | 1.58 | 0.00 | 0.45 |
| 477015925 | 9.44 | 26.08 | 6.54 | 6.62 | 6.42 | 6.81 | 0.10 | -0.08 | 0.00 | 1.58 | 0.00 | -0.05 |
| 477105685 | 5.56 | 28.08 | 7.08 | 6.07 | 5.91 | 6.23 | 0.08 | 1.01 | 0.00 | 1.58 | 0.00 | 0.64 |
| 477174369 | 8.33 | -5.92 | 7.31 | 7.02 | 6.86 | 7.17 | 0.08 | 0.29 | 0.00 | 1.58 | 0.00 | 0.18 |
| 477285885 | 5.56 | -12.92 | 8.15 | 6.77 | 6.60 | 6.94 | 0.09 | 1.39 | 0.00 | 1.58 | 0.00 | 0.88 |
| 477285889 | 5.00 | 18.08 | 4.79 | 6.17 | 6.01 | 6.32 | 0.08 | -1.37 | 0.00 | 1.58 | 0.00 | -0.87 |
| 477644929 | 6.67 | 0.08 | 7.87 | 6.69 | 6.58 | 6.81 | 0.06 | 1.17 | 0.00 | 1.58 | 0.00 | 0.74 |
| 477752369 | 7.22 | 6.08 | 8.77 | 6.67 | 6.55 | 6.78 | 0.06 | 2.10 | 0.00 | 1.58 | 0.00 | 1.33 |
| 477955685 | 9.44 | 10.08 | 7.09 | 6.89 | 6.72 | 7.07 | 0.09 | 0.20 | 0.00 | 1.58 | 0.00 | 0.12 |
| 478365045 | 7.22 | 12.08 | 6.00 | 6.56 | 6.45 | 6.67 | 0.06 | -0.56 | 0.00 | 1.58 | 0.00 | -0.36 |
| 478415365 | 6.67 | -16.92 | 7.09 | 6.98 | 6.81 | 7.15 | 0.09 | 0.10 | 0.00 | 1.58 | 0.00 | 0.07 |
| 478462965 | 8.89 | -7.92 | 8.92 | 7.12 | 6.95 | 7.30 | 0.09 | 1.80 | 0.00 | 1.58 | 0.00 | 1.14 |
| 478486093 | 5.56 | -25.92 | 7.85 | 6.99 | 6.77 | 7.21 | 0.11 | 0.86 | 0.01 | 1.58 | 0.00 | 0.54 |
| 478581965 | 7.22 | -16.92 | 5.19 | 7.06 | 6.89 | 7.23 | 0.09 | -1.86 | 0.00 | 1.58 | 0.00 | -1.18 |
| 478631605 | 7.78 | -16.92 | 6.23 | 7.13 | 6.95 | 7.31 | 0.09 | -0.90 | 0.00 | 1.58 | 0.00 | -0.57 |
| 478735645 | 5.00 | 34.08 | 5.54 | 5.89 | 5.70 | 6.09 | 0.10 | -0.36 | 0.00 | 1.58 | 0.00 | -0.22 |
| 478759445 | 7.78 | 0.08 | 3.23 | 6.84 | 6.71 | 6.97 | 0.06 | -3.61 | 0.00 | 1.58 | 0.00 | -2.28 |
| 478868929 | 8.89 | -19.92 | 6.23 | 7.33 | 7.12 | 7.54 | 0.11 | -1.10 | 0.00 | 1.58 | 0.00 | -0.70 |
| 478913805 | 3.89 | -13.92 | 5.77 | 6.56 | 6.33 | 6.80 | 0.12 | -0.80 | 0.01 | 1.58 | 0.00 | -0.50 |
| 479181725 | 5.56 | 5.08 | 7.38 | 6.46 | 6.33 | 6.60 | 0.07 | 0.92 | 0.00 | 1.58 | 0.00 | 0.58 |
| 479771285 | 6.11 | -24.92 | 7.31 | 7.05 | 6.84 | 7.25 | 0.11 | 0.26 | 0.00 | 1.58 | 0.00 | 0.17 |
| 479995009 | 3.33 | -22.92 | 0.00 | 6.64 | 6.37 | 6.92 | 0.14 | -6.64 | 0.01 | 1.57 | 0.05 | -4.21 |
| 480035129 | 6.67 | -15.92 | 8.08 | 6.97 | 6.80 | 7.13 | 0.09 | 1.11 | 0.00 | 1.58 | 0.00 | 0.70 |
| 489801289 | 5.00 | 12.08 | 2.97 | 6.27 | 6.12 | 6.42 | 0.08 | -3.30 | 0.00 | 1.58 | 0.00 | -2.09 |
| 489933205 | 7.22 | 10.08 | 5.60 | 6.60 | 6.49 | 6.71 | 0.06 | -0.99 | 0.00 | 1.58 | 0.00 | -0.63 |
| 490441169 | 6.11 | -5.92 | 7.69 | 6.72 | 6.58 | 6.86 | 0.07 | 0.97 | 0.00 | 1.58 | 0.00 | 0.61 |
| 490509845 | 5.56 | -13.92 | 6.69 | 6.79 | 6.61 | 6.96 | 0.09 | -0.09 | 0.00 | 1.58 | 0.00 | -0.06 |
| 496851525 | 8.33 | 1.08 | 8.90 | 6.90 | 6.76 | 7.04 | 0.07 | 2.00 | 0.00 | 1.58 | 0.00 | 1.27 |
| 497127605 | 6.11 | 6.08 | 9.23 | 6.52 | 6.40 | 6.64 | 0.06 | 2.71 | 0.00 | 1.58 | 0.00 | 1.71 |
| 497219405 | 7.78 | -20.92 | 8.24 | 7.20 | 7.01 | 7.39 | 0.10 | 1.04 | 0.00 | 1.58 | 0.00 | 0.66 |
| 497360169 | 7.22 | -6.92 | 7.58 | 6.89 | 6.75 | 7.02 | 0.07 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 503222453 | 5.00 | -23.92 | 7.50 | 6.88 | 6.66 | 7.11 | 0.11 | 0.62 | 0.01 | 1.58 | 0.00 | 0.39 |
| 503455689 | 3.89 | -17.92 | 7.38 | 6.63 | 6.39 | 6.87 | 0.12 | 0.75 | 0.01 | 1.58 | 0.00 | 0.48 |
| 503630445 | 10.00 | 28.08 | 8.46 | 6.66 | 6.44 | 6.88 | 0.11 | 1.80 | 0.01 | 1.58 | 0.00 | 1.14 |
| 503641329 | 8.33 | -3.92 | 9.00 | 6.98 | 6.83 | 7.13 | 0.08 | 2.02 | 0.00 | 1.58 | 0.00 | 1.28 |
| 503901765 | 10.00 | -16.92 | 8.08 | 7.43 | 7.19 | 7.66 | 0.12 | 0.65 | 0.01 | 1.58 | 0.00 | 0.41 |
| 503901769 | 10.00 | -17.92 | 6.00 | 7.44 | 7.20 | 7.68 | 0.12 | -1.44 | 0.01 | 1.58 | 0.00 | -0.91 |
| 504168329 | 6.67 | 5.08 | 8.54 | 6.61 | 6.50 | 6.72 | 0.06 | 1.93 | 0.00 | 1.58 | 0.00 | 1.22 |
| 544312125 | 4.44 | 35.08 | 5.08 | 5.80 | 5.59 | 6.02 | 0.11 | -0.73 | 0.00 | 1.58 | 0.00 | -0.46 |
| 544592289 | 6.67 | 4.08 | 7.23 | 6.63 | 6.51 | 6.74 | 0.06 | 0.60 | 0.00 | 1.58 | 0.00 | 0.38 |
| 544612005 | 5.56 | 18.08 | 7.77 | 6.24 | 6.10 | 6.38 | 0.07 | 1.53 | 0.00 | 1.58 | 0.00 | 0.97 |
| 544836405 | 5.56 | 5.08 | 8.85 | 6.46 | 6.33 | 6.60 | 0.07 | 2.38 | 0.00 | 1.58 | 0.00 | 1.51 |
| 544839809 | 6.11 | 34.08 | 6.31 | 6.04 | 5.87 | 6.21 | 0.09 | 0.27 | 0.00 | 1.58 | 0.00 | 0.17 |
| 544840485 | 9.44 | 27.08 | 7.69 | 6.60 | 6.40 | 6.80 | 0.10 | 1.09 | 0.00 | 1.58 | 0.00 | 0.69 |
| 544841165 | 6.11 | 8.08 | 5.92 | 6.48 | 6.37 | 6.60 | 0.06 | -0.56 | 0.00 | 1.58 | 0.00 | -0.35 |
| 544906449 | 7.22 | 3.08 | 7.08 | 6.72 | 6.60 | 6.83 | 0.06 | 0.36 | 0.00 | 1.58 | 0.00 | 0.23 |
| 545083925 | 8.33 | 10.08 | 8.92 | 6.74 | 6.61 | 6.88 | 0.07 | 2.18 | 0.00 | 1.58 | 0.00 | 1.38 |
| 545145809 | 6.11 | 23.08 | 5.62 | 6.23 | 6.09 | 6.36 | 0.07 | -0.61 | 0.00 | 1.58 | 0.00 | -0.39 |
| 545326685 | 7.22 | -2.92 | 6.54 | 6.82 | 6.69 | 6.94 | 0.06 | -0.28 | 0.00 | 1.58 | 0.00 | -0.18 |
| 545428689 | 6.67 | -1.92 | 7.50 | 6.73 | 6.61 | 6.85 | 0.06 | 0.77 | 0.00 | 1.58 | 0.00 | 0.49 |
| 545477649 | 6.11 | -3.92 | 7.31 | 6.69 | 6.55 | 6.82 | 0.07 | 0.62 | 0.00 | 1.58 | 0.00 | 0.39 |
| 545502125 | 8.33 | 5.08 | 7.85 | 6.83 | 6.70 | 6.96 | 0.07 | 1.02 | 0.00 | 1.58 | 0.00 | 0.64 |
| 545675525 | 7.78 | 9.08 | 5.85 | 6.69 | 6.57 | 6.81 | 0.06 | -0.84 | 0.00 | 1.58 | 0.00 | -0.53 |
| 545691165 | 6.11 | -14.92 | 7.46 | 6.88 | 6.71 | 7.04 | 0.09 | 0.59 | 0.00 | 1.58 | 0.00 | 0.37 |
| 545765969 | 7.78 | -0.92 | 7.54 | 6.86 | 6.73 | 6.99 | 0.07 | 0.69 | 0.00 | 1.58 | 0.00 | 0.43 |
| 545919645 | 8.89 | -10.92 | 7.08 | 7.18 | 6.99 | 7.36 | 0.09 | -0.10 | 0.00 | 1.58 | 0.00 | -0.06 |
| 546120249 | 6.11 | 23.08 | 5.77 | 6.23 | 6.09 | 6.36 | 0.07 | -0.46 | 0.00 | 1.58 | 0.00 | -0.29 |
| 547485685 | 8.89 | -22.92 | 8.94 | 7.38 | 7.16 | 7.60 | 0.11 | 1.56 | 0.01 | 1.58 | 0.00 | 0.99 |
| 547650925 | 5.00 | -20.92 | 7.62 | 6.83 | 6.62 | 7.05 | 0.11 | 0.78 | 0.00 | 1.58 | 0.00 | 0.50 |
| 547688325 | 6.11 | -20.92 | 6.92 | 6.98 | 6.79 | 7.17 | 0.10 | -0.06 | 0.00 | 1.58 | 0.00 | -0.03 |
| 547737965 | 7.78 | -19.92 | 7.76 | 7.18 | 6.99 | 7.37 | 0.10 | 0.58 | 0.00 | 1.58 | 0.00 | 0.37 |
| 547784885 | 8.89 | -25.92 | 8.54 | 7.43 | 7.20 | 7.66 | 0.12 | 1.11 | 0.01 | 1.58 | 0.00 | 0.70 |
| 548026285 | 7.22 | -19.92 | 7.87 | 7.11 | 6.93 | 7.29 | 0.09 | 0.76 | 0.00 | 1.58 | 0.00 | 0.48 |
| 557614285 | 5.00 | 24.08 | 4.12 | 6.06 | 5.90 | 6.23 | 0.09 | -1.94 | 0.00 | 1.58 | 0.00 | -1.23 |
| 558048125 | 10.00 | 12.08 | 8.90 | 6.93 | 6.73 | 7.13 | 0.10 | 1.97 | 0.00 | 1.58 | 0.00 | 1.25 |
| 558165777 | 6.67 | -23.92 | 8.77 | 7.10 | 6.90 | 7.30 | 0.10 | 1.67 | 0.00 | 1.58 | 0.00 | 1.05 |
| 558180045 | 10.00 | 23.08 | 8.85 | 6.74 | 6.53 | 6.96 | 0.11 | 2.10 | 0.00 | 1.58 | 0.00 | 1.33 |
| 564670653 | 5.00 | -28.92 | 9.23 | 6.97 | 6.72 | 7.21 | 0.12 | 2.26 | 0.01 | 1.58 | 0.00 | 1.43 |
| 564904633 | 3.33 | -24.92 | 7.31 | 6.68 | 6.39 | 6.96 | 0.14 | 0.63 | 0.01 | 1.58 | 0.00 | 0.40 |
| 564932445 | 8.33 | -2.92 | 6.76 | 6.97 | 6.82 | 7.11 | 0.07 | -0.21 | 0.00 | 1.58 | 0.00 | -0.13 |
| 571289769 | 6.11 | -8.92 | 5.54 | 6.77 | 6.63 | 6.92 | 0.08 | -1.24 | 0.00 | 1.58 | 0.00 | -0.78 |
| 571535925 | 8.89 | -8.92 | 8.54 | 7.14 | 6.96 | 7.32 | 0.09 | 1.40 | 0.00 | 1.58 | 0.00 | 0.88 |
| 612359049 | 7.78 | 15.08 | 7.15 | 6.59 | 6.46 | 6.71 | 0.06 | 0.57 | 0.00 | 1.58 | 0.00 | 0.36 |
| 612506609 | 6.11 | -1.92 | 6.54 | 6.65 | 6.52 | 6.78 | 0.07 | -0.12 | 0.00 | 1.58 | 0.00 | -0.07 |
| 612677965 | 6.11 | -1.92 | 7.23 | 6.65 | 6.52 | 6.78 | 0.07 | 0.58 | 0.00 | 1.58 | 0.00 | 0.36 |
| 612688173 | 5.56 | -24.92 | 7.38 | 6.97 | 6.76 | 7.19 | 0.11 | 0.41 | 0.00 | 1.58 | 0.00 | 0.26 |
| 612902369 | 8.33 | 19.08 | 7.85 | 6.59 | 6.45 | 6.73 | 0.07 | 1.26 | 0.00 | 1.58 | 0.00 | 0.79 |
| 613008445 | 8.33 | -5.92 | 6.23 | 7.02 | 6.86 | 7.17 | 0.08 | -0.79 | 0.00 | 1.58 | 0.00 | -0.50 |
| 613228085 | 8.89 | 5.08 | 7.17 | 6.90 | 6.75 | 7.06 | 0.08 | 0.27 | 0.00 | 1.58 | 0.00 | 0.17 |
| 613271609 | 7.78 | 23.08 | 7.85 | 6.45 | 6.31 | 6.59 | 0.07 | 1.40 | 0.00 | 1.58 | 0.00 | 0.88 |
| 613466085 | 6.67 | -5.92 | 7.38 | 6.80 | 6.66 | 6.93 | 0.07 | 0.59 | 0.00 | 1.58 | 0.00 | 0.37 |
| 613581685 | 9.44 | 7.08 | 8.34 | 6.94 | 6.77 | 7.12 | 0.09 | 1.40 | 0.00 | 1.58 | 0.00 | 0.89 |
| 613692525 | 3.89 | 3.08 | 6.69 | 6.27 | 6.07 | 6.48 | 0.10 | 0.42 | 0.00 | 1.58 | 0.00 | 0.26 |
| 614238569 | 5.00 | -16.92 | 7.58 | 6.76 | 6.56 | 6.96 | 0.10 | 0.82 | 0.00 | 1.58 | 0.00 | 0.52 |
| 614862125 | 7.22 | 27.08 | 5.46 | 6.31 | 6.17 | 6.45 | 0.07 | -0.85 | 0.00 | 1.58 | 0.00 | -0.53 |
| 615039609 | 8.33 | -17.92 | 9.23 | 7.22 | 7.03 | 7.41 | 0.10 | 2.01 | 0.00 | 1.58 | 0.00 | 1.27 |
| 615198725 | 7.78 | -13.92 | 6.54 | 7.08 | 6.91 | 7.25 | 0.08 | -0.54 | 0.00 | 1.58 | 0.00 | -0.34 |
| 615199405 | 5.00 | -24.92 | 7.12 | 6.90 | 6.67 | 7.13 | 0.12 | 0.22 | 0.01 | 1.58 | 0.00 | 0.14 |
| 615399325 | 8.33 | -1.92 | 8.00 | 6.95 | 6.80 | 7.09 | 0.07 | 1.05 | 0.00 | 1.58 | 0.00 | 0.66 |
| 615994325 | 8.89 | -6.92 | 7.69 | 7.11 | 6.93 | 7.28 | 0.09 | 0.58 | 0.00 | 1.58 | 0.00 | 0.37 |
| 625627213 | 5.00 | -29.92 | 0.00 | 6.98 | 6.74 | 7.23 | 0.13 | -6.98 | 0.01 | 1.57 | 0.04 | -4.42 |
| 625648293 | 2.78 | -28.92 | 7.50 | 6.67 | 6.36 | 6.99 | 0.16 | 0.83 | 0.01 | 1.58 | 0.00 | 0.52 |
| 625662565 | 8.89 | 15.08 | 6.92 | 6.73 | 6.58 | 6.89 | 0.08 | 0.19 | 0.00 | 1.58 | 0.00 | 0.12 |
| 626203845 | 9.44 | -14.92 | 7.69 | 7.32 | 7.10 | 7.53 | 0.11 | 0.37 | 0.00 | 1.58 | 0.00 | 0.24 |
| 632610805 | 6.11 | -0.92 | 6.10 | 6.64 | 6.51 | 6.77 | 0.07 | -0.54 | 0.00 | 1.58 | 0.00 | -0.34 |
| 632627125 | 8.33 | 32.08 | 7.75 | 6.37 | 6.19 | 6.54 | 0.09 | 1.38 | 0.00 | 1.58 | 0.00 | 0.87 |
| 632680845 | 5.00 | -13.92 | 7.91 | 6.71 | 6.52 | 6.90 | 0.10 | 1.20 | 0.00 | 1.58 | 0.00 | 0.76 |
| 632699885 | 8.33 | -2.92 | 6.59 | 6.97 | 6.82 | 7.11 | 0.07 | -0.37 | 0.00 | 1.58 | 0.00 | -0.24 |
| 632754289 | 3.89 | 14.08 | 9.73 | 6.09 | 5.89 | 6.29 | 0.10 | 3.64 | 0.00 | 1.58 | 0.01 | 2.30 |
| 633224845 | 8.89 | -7.92 | 8.57 | 7.12 | 6.95 | 7.30 | 0.09 | 1.45 | 0.00 | 1.58 | 0.00 | 0.92 |
| 639259169 | 6.11 | 31.08 | 6.92 | 6.09 | 5.93 | 6.25 | 0.08 | 0.83 | 0.00 | 1.58 | 0.00 | 0.53 |
| 639268005 | 10.00 | 37.08 | 7.62 | 6.50 | 6.26 | 6.75 | 0.12 | 1.11 | 0.01 | 1.58 | 0.00 | 0.70 |
| 639290445 | 6.11 | 16.08 | 7.38 | 6.35 | 6.23 | 6.47 | 0.06 | 1.04 | 0.00 | 1.58 | 0.00 | 0.66 |
| 639559053 | 6.11 | -17.92 | 7.31 | 6.93 | 6.75 | 7.11 | 0.09 | 0.38 | 0.00 | 1.58 | 0.00 | 0.24 |
| 639598489 | 6.11 | -21.92 | 6.15 | 7.00 | 6.80 | 7.19 | 0.10 | -0.84 | 0.00 | 1.58 | 0.00 | -0.53 |
| 640069113 | 5.56 | -27.92 | 4.62 | 7.02 | 6.80 | 7.25 | 0.12 | -2.41 | 0.01 | 1.58 | 0.00 | -1.53 |
| 680105405 | 5.00 | 35.08 | 5.46 | 5.88 | 5.68 | 6.07 | 0.10 | -0.42 | 0.00 | 1.58 | 0.00 | -0.26 |
| 680106773 | 8.89 | -7.92 | 7.38 | 7.12 | 6.95 | 7.30 | 0.09 | 0.26 | 0.00 | 1.58 | 0.00 | 0.16 |
| 680525645 | 6.11 | 19.08 | 5.00 | 6.30 | 6.17 | 6.42 | 0.06 | -1.30 | 0.00 | 1.58 | 0.00 | -0.82 |
| 680670485 | 7.78 | -6.92 | 9.08 | 6.96 | 6.82 | 7.10 | 0.07 | 2.12 | 0.00 | 1.58 | 0.00 | 1.34 |
| 681108417 | 6.11 | -29.92 | 4.62 | 7.13 | 6.90 | 7.36 | 0.12 | -2.52 | 0.01 | 1.58 | 0.00 | -1.59 |
| 681141729 | 10.00 | 3.08 | 4.23 | 7.08 | 6.88 | 7.29 | 0.10 | -2.85 | 0.00 | 1.58 | 0.00 | -1.81 |
| 681232169 | 10.00 | -0.92 | 7.09 | 7.15 | 6.95 | 7.36 | 0.11 | -0.06 | 0.00 | 1.58 | 0.00 | -0.04 |
| 681627245 | 7.22 | 1.08 | 7.54 | 6.75 | 6.63 | 6.87 | 0.06 | 0.79 | 0.00 | 1.58 | 0.00 | 0.50 |
| 681634045 | 4.44 | -3.92 | 4.86 | 6.47 | 6.28 | 6.65 | 0.10 | -1.61 | 0.00 | 1.58 | 0.00 | -1.02 |
| 681636765 | 7.22 | 17.08 | 8.69 | 6.48 | 6.36 | 6.59 | 0.06 | 2.21 | 0.00 | 1.58 | 0.00 | 1.40 |
| 681636769 | 8.89 | 15.08 | 7.08 | 6.73 | 6.58 | 6.89 | 0.08 | 0.34 | 0.00 | 1.58 | 0.00 | 0.22 |
| 681703405 | 9.44 | -0.92 | 7.01 | 7.08 | 6.90 | 7.26 | 0.09 | -0.07 | 0.00 | 1.58 | 0.00 | -0.05 |
| 681979489 | 7.22 | -16.92 | 6.83 | 7.06 | 6.89 | 7.23 | 0.09 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 682074005 | 6.67 | 41.08 | 7.00 | 6.00 | 5.80 | 6.19 | 0.10 | 1.00 | 0.00 | 1.58 | 0.00 | 0.64 |
| 682232449 | 6.67 | -7.92 | 7.99 | 6.83 | 6.69 | 6.97 | 0.07 | 1.16 | 0.00 | 1.58 | 0.00 | 0.73 |
| 682237893 | 6.67 | -23.92 | 9.23 | 7.10 | 6.90 | 7.30 | 0.10 | 2.13 | 0.00 | 1.58 | 0.00 | 1.35 |
| 682490857 | 2.78 | -28.92 | 7.50 | 6.67 | 6.36 | 6.99 | 0.16 | 0.83 | 0.01 | 1.58 | 0.00 | 0.52 |
| 682516689 | 6.11 | 7.08 | 6.25 | 6.50 | 6.38 | 6.62 | 0.06 | -0.25 | 0.00 | 1.58 | 0.00 | -0.16 |
| 682853289 | 8.33 | -12.92 | 6.23 | 7.14 | 6.96 | 7.31 | 0.09 | -0.91 | 0.00 | 1.58 | 0.00 | -0.57 |
| 683302085 | 7.78 | -16.92 | 6.51 | 7.13 | 6.95 | 7.31 | 0.09 | -0.62 | 0.00 | 1.58 | 0.00 | -0.39 |
| 683497933 | 6.67 | -2.92 | 5.05 | 6.75 | 6.62 | 6.87 | 0.06 | -1.70 | 0.00 | 1.58 | 0.00 | -1.07 |
| 683650245 | 5.56 | -15.92 | 7.01 | 6.82 | 6.64 | 7.00 | 0.09 | 0.19 | 0.00 | 1.58 | 0.00 | 0.12 |
| 683680165 | 7.22 | -18.92 | 5.38 | 7.09 | 6.91 | 7.27 | 0.09 | -1.71 | 0.00 | 1.58 | 0.00 | -1.08 |
| 683986845 | 8.89 | -16.92 | 6.35 | 7.28 | 7.08 | 7.48 | 0.10 | -0.93 | 0.00 | 1.58 | 0.00 | -0.59 |
| 693727169 | 5.00 | 14.08 | 7.42 | 6.23 | 6.08 | 6.39 | 0.08 | 1.18 | 0.00 | 1.58 | 0.00 | 0.75 |
| 693825765 | 3.33 | 18.08 | 8.41 | 5.95 | 5.72 | 6.17 | 0.12 | 2.46 | 0.01 | 1.58 | 0.00 | 1.56 |
| 693950209 | 7.78 | 30.08 | 7.58 | 6.33 | 6.17 | 6.49 | 0.08 | 1.25 | 0.00 | 1.58 | 0.00 | 0.79 |
| 693977409 | 6.11 | -25.92 | 6.92 | 7.06 | 6.85 | 7.28 | 0.11 | -0.14 | 0.00 | 1.58 | 0.00 | -0.09 |
| 693991685 | 5.00 | 26.08 | 6.26 | 6.03 | 5.86 | 6.20 | 0.09 | 0.23 | 0.00 | 1.58 | 0.00 | 0.15 |
| 694179433 | 6.11 | -27.92 | 9.23 | 7.10 | 6.88 | 7.32 | 0.11 | 2.13 | 0.01 | 1.58 | 0.00 | 1.35 |
| 694509165 | 6.11 | -23.92 | 7.42 | 7.03 | 6.83 | 7.23 | 0.10 | 0.39 | 0.00 | 1.58 | 0.00 | 0.25 |
| 700828405 | 10.00 | 14.08 | 7.25 | 6.90 | 6.70 | 7.10 | 0.10 | 0.36 | 0.00 | 1.58 | 0.00 | 0.23 |
| 700976645 | 6.67 | 11.08 | 8.46 | 6.51 | 6.40 | 6.62 | 0.06 | 1.96 | 0.00 | 1.58 | 0.00 | 1.24 |
| 701021525 | 9.44 | -20.92 | 6.26 | 7.42 | 7.19 | 7.65 | 0.12 | -1.16 | 0.01 | 1.58 | 0.00 | -0.73 |
| 701079329 | 5.00 | -3.92 | 4.42 | 6.54 | 6.38 | 6.71 | 0.08 | -2.12 | 0.00 | 1.58 | 0.00 | -1.34 |
| 701442445 | 7.22 | -27.92 | 8.08 | 7.24 | 7.03 | 7.46 | 0.11 | 0.83 | 0.00 | 1.58 | 0.00 | 0.53 |
| 707251693 | 1.11 | -28.92 | 6.92 | 6.45 | 6.06 | 6.84 | 0.20 | 0.47 | 0.02 | 1.58 | 0.00 | 0.30 |
| 707506685 | 6.67 | 33.08 | 6.00 | 6.13 | 5.97 | 6.29 | 0.08 | -0.13 | 0.00 | 1.58 | 0.00 | -0.08 |
| 707574009 | 6.11 | -13.92 | 6.63 | 6.86 | 6.69 | 7.02 | 0.08 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 707719525 | 3.33 | 4.08 | 2.77 | 6.18 | 5.96 | 6.41 | 0.12 | -3.42 | 0.01 | 1.58 | 0.01 | -2.16 |
| 707824245 | 5.00 | 12.08 | 7.15 | 6.27 | 6.12 | 6.42 | 0.08 | 0.89 | 0.00 | 1.58 | 0.00 | 0.56 |
| 708059525 | 4.44 | 15.08 | 4.15 | 6.14 | 5.97 | 6.32 | 0.09 | -1.99 | 0.00 | 1.58 | 0.00 | -1.26 |
| 708067689 | 10.00 | -4.92 | 7.85 | 7.22 | 7.01 | 7.43 | 0.11 | 0.63 | 0.00 | 1.58 | 0.00 | 0.40 |
| 708249249 | 8.33 | -1.92 | 6.00 | 6.95 | 6.80 | 7.09 | 0.07 | -0.95 | 0.00 | 1.58 | 0.00 | -0.60 |
| 748140765 | 6.11 | 25.08 | 6.15 | 6.19 | 6.05 | 6.33 | 0.07 | -0.04 | 0.00 | 1.58 | 0.00 | -0.03 |
| 748280849 | 7.22 | 1.08 | 5.08 | 6.75 | 6.63 | 6.87 | 0.06 | -1.67 | 0.00 | 1.58 | 0.00 | -1.06 |
| 748280853 | 5.56 | -21.92 | 6.67 | 6.92 | 6.72 | 7.13 | 0.10 | -0.26 | 0.00 | 1.58 | 0.00 | -0.16 |
| 748617453 | 6.11 | -28.92 | 8.65 | 7.11 | 6.89 | 7.34 | 0.11 | 1.54 | 0.01 | 1.58 | 0.00 | 0.97 |
| 748928205 | 5.56 | 7.08 | 6.54 | 6.43 | 6.30 | 6.56 | 0.07 | 0.11 | 0.00 | 1.58 | 0.00 | 0.07 |
| 748929565 | 8.33 | 11.08 | 2.69 | 6.73 | 6.59 | 6.86 | 0.07 | -4.03 | 0.00 | 1.58 | 0.00 | -2.55 |
| 749039045 | 3.89 | 6.08 | 6.00 | 6.22 | 6.02 | 6.42 | 0.10 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 749039049 | 6.11 | -1.92 | 5.92 | 6.65 | 6.52 | 6.78 | 0.07 | -0.73 | 0.00 | 1.58 | 0.00 | -0.46 |
| 749152609 | 10.00 | -6.92 | 8.69 | 7.25 | 7.04 | 7.47 | 0.11 | 1.44 | 0.00 | 1.58 | 0.00 | 0.91 |
| 749231489 | 8.33 | 30.08 | 8.77 | 6.40 | 6.23 | 6.57 | 0.09 | 2.37 | 0.00 | 1.58 | 0.00 | 1.50 |
| 749462685 | 6.67 | 26.08 | 5.23 | 6.25 | 6.11 | 6.39 | 0.07 | -1.02 | 0.00 | 1.58 | 0.00 | -0.64 |
| 749561289 | 5.00 | -9.92 | 7.15 | 6.64 | 6.46 | 6.82 | 0.09 | 0.51 | 0.00 | 1.58 | 0.00 | 0.32 |
| 749657849 | 6.67 | 5.08 | 7.31 | 6.61 | 6.50 | 6.72 | 0.06 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 749782965 | 6.67 | -18.92 | 5.67 | 7.02 | 6.84 | 7.20 | 0.09 | -1.34 | 0.00 | 1.58 | 0.00 | -0.85 |
| 749978805 | 8.33 | 12.08 | 5.62 | 6.71 | 6.58 | 6.84 | 0.07 | -1.09 | 0.00 | 1.58 | 0.00 | -0.69 |
| 749992409 | 9.44 | 14.08 | 4.46 | 6.82 | 6.65 | 7.00 | 0.09 | -2.36 | 0.00 | 1.58 | 0.00 | -1.49 |
| 750438485 | 5.00 | 26.08 | 7.62 | 6.03 | 5.86 | 6.20 | 0.09 | 1.59 | 0.00 | 1.58 | 0.00 | 1.00 |
| 750586725 | 4.44 | -12.92 | 7.31 | 6.62 | 6.41 | 6.83 | 0.11 | 0.69 | 0.00 | 1.58 | 0.00 | 0.43 |
| 750645209 | 5.56 | -19.92 | 8.24 | 6.89 | 6.69 | 7.09 | 0.10 | 1.35 | 0.00 | 1.58 | 0.00 | 0.86 |
| 750654733 | 7.78 | -8.92 | 6.92 | 6.99 | 6.85 | 7.14 | 0.08 | -0.07 | 0.00 | 1.58 | 0.00 | -0.05 |
| 751584965 | 8.33 | -13.92 | 8.46 | 7.15 | 6.98 | 7.33 | 0.09 | 1.31 | 0.00 | 1.58 | 0.00 | 0.83 |
| 761861125 | 7.22 | 0.08 | 7.25 | 6.77 | 6.65 | 6.89 | 0.06 | 0.49 | 0.00 | 1.58 | 0.00 | 0.31 |
| 762080765 | 8.89 | -7.92 | 7.91 | 7.12 | 6.95 | 7.30 | 0.09 | 0.79 | 0.00 | 1.58 | 0.00 | 0.50 |
| 768580205 | 8.33 | -23.92 | 8.65 | 7.32 | 7.11 | 7.54 | 0.11 | 1.33 | 0.00 | 1.58 | 0.00 | 0.84 |
| 768869209 | 9.44 | -4.92 | 9.69 | 7.15 | 6.96 | 7.34 | 0.10 | 2.55 | 0.00 | 1.58 | 0.00 | 1.61 |
| 768875333 | 8.33 | -26.92 | 9.23 | 7.37 | 7.15 | 7.60 | 0.11 | 1.86 | 0.01 | 1.58 | 0.00 | 1.17 |
| 768897765 | 5.56 | 25.08 | 7.09 | 6.12 | 5.97 | 6.27 | 0.08 | 0.97 | 0.00 | 1.58 | 0.00 | 0.61 |
| 769097005 | 7.22 | -13.92 | 6.76 | 7.01 | 6.85 | 7.17 | 0.08 | -0.25 | 0.00 | 1.58 | 0.00 | -0.16 |
| 775535245 | 10.00 | -7.92 | 5.77 | 7.27 | 7.05 | 7.49 | 0.11 | -1.50 | 0.00 | 1.58 | 0.00 | -0.95 |
| 775850085 | 2.78 | 15.08 | 4.85 | 5.92 | 5.67 | 6.18 | 0.13 | -1.08 | 0.01 | 1.58 | 0.00 | -0.68 |
| 776009889 | 7.22 | -18.92 | 7.79 | 7.09 | 6.91 | 7.27 | 0.09 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 776311125 | 8.33 | 14.08 | 7.85 | 6.68 | 6.54 | 6.81 | 0.07 | 1.17 | 0.00 | 1.58 | 0.00 | 0.74 |
| 816076165 | 3.33 | 19.08 | 7.77 | 5.93 | 5.70 | 6.16 | 0.12 | 1.84 | 0.01 | 1.58 | 0.00 | 1.17 |
| 816192449 | 8.33 | 18.08 | 8.00 | 6.61 | 6.47 | 6.75 | 0.07 | 1.39 | 0.00 | 1.58 | 0.00 | 0.88 |
| 816663005 | 8.89 | -10.92 | 8.23 | 7.18 | 6.99 | 7.36 | 0.09 | 1.06 | 0.00 | 1.58 | 0.00 | 0.67 |
| 816665045 | 8.89 | 4.08 | 8.15 | 6.92 | 6.77 | 7.07 | 0.08 | 1.23 | 0.00 | 1.58 | 0.00 | 0.78 |
| 816708565 | 4.44 | 14.08 | 7.08 | 6.16 | 5.99 | 6.34 | 0.09 | 0.92 | 0.00 | 1.58 | 0.00 | 0.58 |
| 817011165 | 7.78 | 8.08 | 7.00 | 6.70 | 6.59 | 6.82 | 0.06 | 0.30 | 0.00 | 1.58 | 0.00 | 0.19 |
| 817191365 | 6.67 | -1.92 | 7.62 | 6.73 | 6.61 | 6.85 | 0.06 | 0.89 | 0.00 | 1.58 | 0.00 | 0.56 |
| 817226045 | 8.33 | 8.08 | 7.69 | 6.78 | 6.65 | 6.91 | 0.07 | 0.91 | 0.00 | 1.58 | 0.00 | 0.58 |
| 817515729 | 8.89 | -5.92 | 8.08 | 7.09 | 6.92 | 7.26 | 0.09 | 0.99 | 0.00 | 1.58 | 0.00 | 0.62 |
| 817972689 | 8.89 | -3.92 | 6.63 | 7.06 | 6.89 | 7.22 | 0.08 | -0.42 | 0.00 | 1.58 | 0.00 | -0.27 |
| 818157645 | 6.11 | -20.92 | 7.27 | 6.98 | 6.79 | 7.17 | 0.10 | 0.29 | 0.00 | 1.58 | 0.00 | 0.18 |
| 818244005 | 5.56 | -12.92 | 7.18 | 6.77 | 6.60 | 6.94 | 0.09 | 0.41 | 0.00 | 1.58 | 0.00 | 0.26 |
| 818424885 | 9.44 | 22.08 | 7.85 | 6.69 | 6.50 | 6.87 | 0.10 | 1.16 | 0.00 | 1.58 | 0.00 | 0.73 |
| 818918565 | 8.89 | -2.92 | 6.68 | 7.04 | 6.88 | 7.20 | 0.08 | -0.36 | 0.00 | 1.58 | 0.00 | -0.23 |
| 819300733 | 7.78 | -5.92 | 7.05 | 6.94 | 6.80 | 7.08 | 0.07 | 0.11 | 0.00 | 1.58 | 0.00 | 0.07 |
| 819410885 | 7.78 | -17.92 | 6.92 | 7.15 | 6.97 | 7.33 | 0.09 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 819478885 | 10.00 | -10.92 | 4.92 | 7.32 | 7.10 | 7.55 | 0.11 | -2.40 | 0.01 | 1.58 | 0.00 | -1.52 |
| 829604097 | 3.33 | -27.92 | 6.54 | 6.73 | 6.44 | 7.02 | 0.15 | -0.19 | 0.01 | 1.58 | 0.00 | -0.12 |
| 830503049 | 8.89 | 34.08 | 5.27 | 6.41 | 6.21 | 6.61 | 0.10 | -1.13 | 0.00 | 1.58 | 0.00 | -0.72 |
| 830505765 | 7.78 | -5.92 | 9.23 | 6.94 | 6.80 | 7.08 | 0.07 | 2.29 | 0.00 | 1.58 | 0.00 | 1.45 |
| 836702605 | 8.33 | 8.08 | 8.08 | 6.78 | 6.65 | 6.91 | 0.07 | 1.30 | 0.00 | 1.58 | 0.00 | 0.82 |
| 837375809 | 7.78 | -6.92 | 6.59 | 6.96 | 6.82 | 7.10 | 0.07 | -0.37 | 0.00 | 1.58 | 0.00 | -0.23 |
| 843205445 | 6.67 | -4.92 | 2.54 | 6.78 | 6.65 | 6.91 | 0.07 | -4.24 | 0.00 | 1.58 | 0.00 | -2.68 |
| 843260529 | 4.44 | 22.08 | 5.08 | 6.02 | 5.84 | 6.21 | 0.09 | -0.95 | 0.00 | 1.58 | 0.00 | -0.60 |
| 843677377 | 6.67 | -29.92 | 6.92 | 7.21 | 6.98 | 7.43 | 0.11 | -0.28 | 0.01 | 1.58 | 0.00 | -0.18 |
| 844039805 | 10.00 | 29.08 | 6.00 | 6.64 | 6.42 | 6.86 | 0.11 | -0.64 | 0.01 | 1.58 | 0.00 | -0.41 |
| 59167 | 5.00 | 31.08 | 4.77 | 5.94 | 5.76 | 6.13 | 0.09 | -1.18 | 0.00 | 1.58 | 0.00 | -0.74 |
| 60527 | 9.44 | 0.08 | 7.92 | 7.06 | 6.88 | 7.24 | 0.09 | 0.86 | 0.00 | 1.58 | 0.00 | 0.54 |
| 82291 | 6.11 | 28.08 | 8.23 | 6.14 | 5.99 | 6.29 | 0.08 | 2.09 | 0.00 | 1.58 | 0.00 | 1.32 |
| 83647 | 5.56 | 26.08 | 9.00 | 6.10 | 5.95 | 6.26 | 0.08 | 2.90 | 0.00 | 1.58 | 0.00 | 1.83 |
| 276767 | 5.56 | 19.08 | 5.08 | 6.22 | 6.08 | 6.36 | 0.07 | -1.15 | 0.00 | 1.58 | 0.00 | -0.72 |
| 287651 | 0.56 | 12.08 | 5.36 | 5.68 | 5.31 | 6.05 | 0.19 | -0.32 | 0.01 | 1.58 | 0.00 | -0.21 |
| 310099 | 9.44 | 49.08 | 7.23 | 6.23 | 5.96 | 6.49 | 0.14 | 1.00 | 0.01 | 1.58 | 0.00 | 0.64 |
| 359051 | 10.00 | 29.08 | 3.38 | 6.64 | 6.42 | 6.86 | 0.11 | -3.26 | 0.01 | 1.58 | 0.01 | -2.06 |
| 421644 | 8.89 | 19.08 | 7.62 | 6.66 | 6.50 | 6.82 | 0.08 | 0.95 | 0.00 | 1.58 | 0.00 | 0.60 |
| 427731 | 4.44 | 43.08 | 4.46 | 5.67 | 5.43 | 5.91 | 0.12 | -1.21 | 0.01 | 1.58 | 0.00 | -0.76 |
| 480767 | 8.33 | 31.08 | 6.31 | 6.39 | 6.21 | 6.56 | 0.09 | -0.08 | 0.00 | 1.58 | 0.00 | -0.05 |
| 592967 | 10.00 | 31.08 | 7.23 | 6.61 | 6.38 | 6.84 | 0.12 | 0.62 | 0.01 | 1.58 | 0.00 | 0.39 |
| 593651 | 10.00 | 30.08 | 6.38 | 6.62 | 6.40 | 6.85 | 0.12 | -0.24 | 0.01 | 1.58 | 0.00 | -0.15 |
| 605891 | 10.00 | 32.08 | 8.15 | 6.59 | 6.36 | 6.82 | 0.12 | 1.56 | 0.01 | 1.58 | 0.00 | 0.99 |
| 619491 | 9.44 | 38.08 | 8.00 | 6.41 | 6.19 | 6.64 | 0.12 | 1.59 | 0.01 | 1.58 | 0.00 | 1.00 |
| 654167 | 7.22 | 53.08 | 6.15 | 5.86 | 5.62 | 6.11 | 0.12 | 0.29 | 0.01 | 1.58 | 0.00 | 0.18 |
| 654847 | 3.89 | 31.08 | 7.31 | 5.80 | 5.57 | 6.02 | 0.12 | 1.51 | 0.01 | 1.58 | 0.00 | 0.96 |
| 667087 | 5.00 | 30.08 | 7.54 | 5.96 | 5.78 | 6.14 | 0.09 | 1.58 | 0.00 | 1.58 | 0.00 | 1.00 |
| 686131 | 8.89 | 39.08 | 5.38 | 6.32 | 6.11 | 6.54 | 0.11 | -0.94 | 0.00 | 1.58 | 0.00 | -0.59 |
| 725571 | 3.33 | 42.08 | 6.18 | 5.54 | 5.26 | 5.81 | 0.14 | 0.64 | 0.01 | 1.58 | 0.00 | 0.41 |
| 793567 | 10.00 | 31.08 | 6.15 | 6.61 | 6.38 | 6.84 | 0.12 | -0.45 | 0.01 | 1.58 | 0.00 | -0.29 |
| 941807 | 4.44 | 30.08 | 5.08 | 5.89 | 5.69 | 6.09 | 0.10 | -0.81 | 0.00 | 1.58 | 0.00 | -0.51 |
| 955407 | 6.67 | 23.08 | 5.54 | 6.30 | 6.17 | 6.43 | 0.07 | -0.76 | 0.00 | 1.58 | 0.00 | -0.48 |
| 1073047 | 6.67 | 29.08 | 5.85 | 6.20 | 6.05 | 6.35 | 0.07 | -0.35 | 0.00 | 1.58 | 0.00 | -0.22 |
| 1079171 | 5.00 | 23.08 | 3.13 | 6.08 | 5.92 | 6.25 | 0.08 | -2.95 | 0.00 | 1.58 | 0.00 | -1.86 |
| 1120651 | 7.22 | 37.08 | 6.00 | 6.14 | 5.96 | 6.31 | 0.09 | -0.14 | 0.00 | 1.58 | 0.00 | -0.09 |
| 1146487 | 4.17 | 39.08 | 6.92 | 5.70 | 5.46 | 5.94 | 0.12 | 1.22 | 0.01 | 1.58 | 0.00 | 0.78 |
| 1160767 | 6.67 | 17.08 | 6.15 | 6.40 | 6.29 | 6.52 | 0.06 | -0.25 | 0.00 | 1.58 | 0.00 | -0.16 |
| 1168927 | 7.78 | 6.08 | 4.62 | 6.74 | 6.62 | 6.86 | 0.06 | -2.12 | 0.00 | 1.58 | 0.00 | -1.34 |
| 1203611 | 3.33 | 27.08 | 5.69 | 5.79 | 5.55 | 6.03 | 0.12 | -0.10 | 0.01 | 1.58 | 0.00 | -0.06 |
| 1227407 | 2.78 | 30.08 | 5.54 | 5.67 | 5.40 | 5.94 | 0.14 | -0.13 | 0.01 | 1.58 | 0.00 | -0.08 |
| 1234887 | 10.00 | 31.08 | 8.38 | 6.61 | 6.38 | 6.84 | 0.12 | 1.78 | 0.01 | 1.58 | 0.00 | 1.13 |
| 1236247 | 3.89 | 46.08 | 7.85 | 5.54 | 5.27 | 5.81 | 0.14 | 2.30 | 0.01 | 1.58 | 0.01 | 1.46 |
| 1236931 | 7.78 | 43.08 | 6.77 | 6.11 | 5.90 | 6.31 | 0.10 | 0.66 | 0.00 | 1.58 | 0.00 | 0.42 |
| 1258084 | 8.89 | 27.08 | 4.85 | 6.53 | 6.35 | 6.70 | 0.09 | -1.68 | 0.00 | 1.58 | 0.00 | -1.06 |
| 1283167 | 6.67 | 32.08 | 6.69 | 6.15 | 5.99 | 6.31 | 0.08 | 0.54 | 0.00 | 1.58 | 0.00 | 0.34 |
| 1483087 | 6.67 | 36.08 | 3.00 | 6.08 | 5.91 | 6.25 | 0.09 | -3.08 | 0.00 | 1.58 | 0.00 | -1.95 |
| 1498727 | 6.11 | 34.08 | 6.23 | 6.04 | 5.87 | 6.21 | 0.09 | 0.19 | 0.00 | 1.58 | 0.00 | 0.12 |
| 1532047 | 5.56 | 0.08 | 4.00 | 6.55 | 6.41 | 6.69 | 0.07 | -2.55 | 0.00 | 1.58 | 0.00 | -1.61 |
| 1636087 | 5.00 | 24.08 | 6.77 | 6.06 | 5.90 | 6.23 | 0.09 | 0.71 | 0.00 | 1.58 | 0.00 | 0.45 |
| 1640847 | 5.56 | 50.08 | 7.54 | 5.69 | 5.45 | 5.94 | 0.12 | 1.84 | 0.01 | 1.58 | 0.00 | 1.17 |
| 1642207 | 3.33 | 31.08 | 8.23 | 5.72 | 5.47 | 5.97 | 0.13 | 2.51 | 0.01 | 1.58 | 0.01 | 1.59 |
| 1645611 | 6.67 | 32.08 | 2.49 | 6.15 | 5.99 | 6.31 | 0.08 | -3.66 | 0.00 | 1.58 | 0.00 | -2.32 |
| 1680291 | 10.00 | 39.08 | 7.85 | 6.47 | 6.22 | 6.72 | 0.13 | 1.38 | 0.01 | 1.58 | 0.00 | 0.87 |
| 1688451 | 5.00 | 38.08 | 6.08 | 5.83 | 5.62 | 6.03 | 0.11 | 0.25 | 0.00 | 1.58 | 0.00 | 0.16 |
| 1693207 | 8.33 | 27.08 | 7.15 | 6.45 | 6.29 | 6.61 | 0.08 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 1768044 | 6.11 | 25.08 | 6.46 | 6.19 | 6.05 | 6.33 | 0.07 | 0.27 | 0.00 | 1.58 | 0.00 | 0.17 |
| 1805415 | 6.11 | 0.08 | 5.77 | 6.62 | 6.49 | 6.75 | 0.06 | -0.85 | 0.00 | 1.58 | 0.00 | -0.54 |
| 1817647 | 6.11 | 15.08 | 7.46 | 6.36 | 6.24 | 6.48 | 0.06 | 1.10 | 0.00 | 1.58 | 0.00 | 0.69 |
| 1826491 | 5.00 | 43.08 | 5.77 | 5.74 | 5.51 | 5.97 | 0.12 | 0.03 | 0.01 | 1.58 | 0.00 | 0.02 |
| 1831927 | 5.56 | 43.08 | 7.31 | 5.81 | 5.60 | 6.03 | 0.11 | 1.49 | 0.00 | 1.58 | 0.00 | 0.95 |
| 1843487 | 8.33 | 39.08 | 6.54 | 6.25 | 6.05 | 6.45 | 0.10 | 0.29 | 0.00 | 1.58 | 0.00 | 0.18 |
| 1846887 | 10.00 | 35.08 | 7.15 | 6.54 | 6.30 | 6.78 | 0.12 | 0.61 | 0.01 | 1.58 | 0.00 | 0.39 |
| 1884971 | 7.22 | 41.08 | 7.85 | 6.07 | 5.88 | 6.26 | 0.10 | 1.78 | 0.00 | 1.58 | 0.00 | 1.12 |
| 1889739 | 10.00 | 49.08 | 7.69 | 6.30 | 6.02 | 6.58 | 0.14 | 1.39 | 0.01 | 1.58 | 0.00 | 0.88 |
| 1894487 | 10.00 | 33.08 | 9.23 | 6.57 | 6.34 | 6.81 | 0.12 | 2.66 | 0.01 | 1.58 | 0.01 | 1.68 |
| 1955691 | 7.22 | 33.08 | 8.46 | 6.21 | 6.04 | 6.37 | 0.08 | 2.26 | 0.00 | 1.58 | 0.00 | 1.43 |
| 1961811 | 5.56 | 41.08 | 6.85 | 5.85 | 5.64 | 6.05 | 0.10 | 1.00 | 0.00 | 1.58 | 0.00 | 0.63 |
| 1963167 | 7.22 | 34.08 | 6.15 | 6.19 | 6.02 | 6.35 | 0.08 | -0.03 | 0.00 | 1.58 | 0.00 | -0.02 |
| 1972699 | 6.67 | -28.92 | 8.08 | 7.19 | 6.97 | 7.41 | 0.11 | 0.89 | 0.01 | 1.58 | 0.00 | 0.56 |
| 2025047 | 8.33 | 34.08 | 5.00 | 6.34 | 6.15 | 6.52 | 0.09 | -1.34 | 0.00 | 1.58 | 0.00 | -0.84 |
| 2027767 | 8.89 | 39.08 | 7.23 | 6.32 | 6.11 | 6.54 | 0.11 | 0.91 | 0.00 | 1.58 | 0.00 | 0.57 |
| 2052927 | 3.89 | 38.08 | 5.54 | 5.68 | 5.43 | 5.92 | 0.12 | -0.14 | 0.01 | 1.58 | 0.00 | -0.09 |
| 2062451 | 3.89 | 27.08 | 6.23 | 5.87 | 5.65 | 6.08 | 0.11 | 0.36 | 0.00 | 1.58 | 0.00 | 0.23 |
| 2069931 | 5.56 | 18.08 | 7.00 | 6.24 | 6.10 | 6.38 | 0.07 | 0.76 | 0.00 | 1.58 | 0.00 | 0.48 |
| 2072647 | 7.78 | 25.08 | 4.62 | 6.41 | 6.27 | 6.56 | 0.07 | -1.80 | 0.00 | 1.58 | 0.00 | -1.14 |
| 2133847 | 3.89 | 37.08 | 3.46 | 5.70 | 5.45 | 5.94 | 0.12 | -2.23 | 0.01 | 1.58 | 0.00 | -1.41 |
| 2167863 | 4.44 | -29.92 | 4.62 | 6.91 | 6.65 | 7.17 | 0.13 | -2.30 | 0.01 | 1.58 | 0.01 | -1.45 |
| 2201171 | 5.56 | -3.92 | 3.77 | 6.61 | 6.47 | 6.76 | 0.08 | -2.85 | 0.00 | 1.58 | 0.00 | -1.80 |
| 2202527 | 10.00 | 44.08 | 7.08 | 6.39 | 6.12 | 6.65 | 0.14 | 0.69 | 0.01 | 1.58 | 0.00 | 0.44 |
| 2233131 | 5.00 | 8.08 | 2.08 | 6.34 | 6.19 | 6.49 | 0.08 | -4.26 | 0.00 | 1.58 | 0.01 | -2.69 |
| 2301807 | 4.44 | 44.08 | 7.23 | 5.65 | 5.40 | 5.89 | 0.12 | 1.58 | 0.01 | 1.58 | 0.00 | 1.00 |
| 2303847 | 7.78 | 38.08 | 6.00 | 6.19 | 6.01 | 6.38 | 0.09 | -0.19 | 0.00 | 1.58 | 0.00 | -0.12 |
| 2312007 | 7.78 | -5.92 | 7.31 | 6.94 | 6.80 | 7.08 | 0.07 | 0.36 | 0.00 | 1.58 | 0.00 | 0.23 |
| 2316091 | 6.67 | 31.08 | 6.62 | 6.17 | 6.01 | 6.32 | 0.08 | 0.45 | 0.00 | 1.58 | 0.00 | 0.28 |
| 2325615 | 6.11 | -17.92 | 8.52 | 6.93 | 6.75 | 7.11 | 0.09 | 1.59 | 0.00 | 1.58 | 0.00 | 1.01 |
| 2330367 | 6.11 | 17.08 | 6.54 | 6.33 | 6.21 | 6.45 | 0.06 | 0.21 | 0.00 | 1.58 | 0.00 | 0.13 |
| 2373887 | 8.33 | 40.08 | 5.92 | 6.23 | 6.03 | 6.44 | 0.10 | -0.31 | 0.00 | 1.58 | 0.00 | -0.20 |
| 2379327 | 3.89 | 44.08 | 6.85 | 5.58 | 5.31 | 5.84 | 0.13 | 1.27 | 0.01 | 1.58 | 0.00 | 0.80 |
| 2419447 | 6.67 | 31.08 | 6.77 | 6.17 | 6.01 | 6.32 | 0.08 | 0.60 | 0.00 | 1.58 | 0.00 | 0.38 |
| 2450727 | 4.44 | 30.08 | 6.04 | 5.89 | 5.69 | 6.09 | 0.10 | 0.15 | 0.00 | 1.58 | 0.00 | 0.09 |
| 2460931 | 3.33 | 22.08 | 2.46 | 5.88 | 5.64 | 6.11 | 0.12 | -3.42 | 0.01 | 1.58 | 0.01 | -2.16 |
| 2501047 | 4.44 | 40.08 | 6.23 | 5.72 | 5.49 | 5.95 | 0.12 | 0.51 | 0.01 | 1.58 | 0.00 | 0.32 |
| 2587415 | 8.33 | -3.92 | 4.69 | 6.98 | 6.83 | 7.13 | 0.08 | -2.29 | 0.00 | 1.58 | 0.00 | -1.45 |
| 2637047 | 9.44 | 31.08 | 5.27 | 6.53 | 6.33 | 6.74 | 0.11 | -1.26 | 0.00 | 1.58 | 0.00 | -0.80 |
| 2637727 | 5.00 | 43.08 | 5.77 | 5.74 | 5.51 | 5.97 | 0.12 | 0.03 | 0.01 | 1.58 | 0.00 | 0.02 |
| 2640451 | 5.00 | -3.92 | 8.08 | 6.54 | 6.38 | 6.71 | 0.08 | 1.54 | 0.00 | 1.58 | 0.00 | 0.97 |
| 2654047 | 6.67 | 34.08 | 7.62 | 6.11 | 5.95 | 6.28 | 0.08 | 1.50 | 0.00 | 1.58 | 0.00 | 0.95 |
| 2686011 | 5.00 | 17.08 | 9.08 | 6.18 | 6.03 | 6.34 | 0.08 | 2.89 | 0.00 | 1.58 | 0.00 | 1.83 |
| 2749927 | 10.00 | 41.08 | 7.08 | 6.44 | 6.18 | 6.69 | 0.13 | 0.64 | 0.01 | 1.58 | 0.00 | 0.41 |
| 2756047 | 5.00 | 32.08 | 5.00 | 5.93 | 5.74 | 6.12 | 0.10 | -0.93 | 0.00 | 1.58 | 0.00 | -0.59 |
| 2824047 | 7.22 | 40.08 | 7.23 | 6.09 | 5.90 | 6.27 | 0.10 | 1.15 | 0.00 | 1.58 | 0.00 | 0.72 |
| 2858047 | 3.33 | 20.08 | 4.00 | 5.91 | 5.68 | 6.14 | 0.12 | -1.91 | 0.01 | 1.58 | 0.00 | -1.21 |
| 2859411 | 6.67 | 26.08 | 7.00 | 6.25 | 6.11 | 6.39 | 0.07 | 0.75 | 0.00 | 1.58 | 0.00 | 0.47 |
| 2894771 | 3.33 | 44.08 | 5.46 | 5.50 | 5.22 | 5.79 | 0.14 | -0.04 | 0.01 | 1.58 | 0.00 | -0.03 |
| 2938971 | 6.67 | -3.92 | 2.80 | 6.76 | 6.63 | 6.89 | 0.07 | -3.96 | 0.00 | 1.58 | 0.00 | -2.50 |
| 2960727 | 7.22 | 34.08 | 4.77 | 6.19 | 6.02 | 6.35 | 0.08 | -1.42 | 0.00 | 1.58 | 0.00 | -0.90 |
| 2965491 | 8.33 | -3.92 | 6.76 | 6.98 | 6.83 | 7.13 | 0.08 | -0.22 | 0.00 | 1.58 | 0.00 | -0.14 |
| 2986567 | 3.33 | 39.08 | 6.62 | 5.59 | 5.32 | 5.86 | 0.14 | 1.03 | 0.01 | 1.58 | 0.00 | 0.65 |
| 2990651 | 8.33 | 40.08 | 5.62 | 6.23 | 6.03 | 6.44 | 0.10 | -0.62 | 0.00 | 1.58 | 0.00 | -0.39 |
| 2996767 | 5.00 | 31.08 | 5.68 | 5.94 | 5.76 | 6.13 | 0.09 | -0.26 | 0.00 | 1.58 | 0.00 | -0.17 |
| 3023967 | 5.00 | 10.08 | 7.62 | 6.30 | 6.15 | 6.45 | 0.08 | 1.31 | 0.00 | 1.58 | 0.00 | 0.83 |
| 3062727 | 8.33 | 41.08 | 7.46 | 6.22 | 6.01 | 6.42 | 0.11 | 1.25 | 0.00 | 1.58 | 0.00 | 0.79 |
| 3093327 | 9.44 | 22.08 | 7.31 | 6.69 | 6.50 | 6.87 | 0.10 | 0.62 | 0.00 | 1.58 | 0.00 | 0.39 |
| 3115767 | 8.89 | 40.08 | 5.54 | 6.31 | 6.09 | 6.52 | 0.11 | -0.77 | 0.00 | 1.58 | 0.00 | -0.49 |
| 3123247 | 6.11 | 37.08 | 5.23 | 5.99 | 5.81 | 6.17 | 0.09 | -0.76 | 0.00 | 1.58 | 0.00 | -0.48 |
| 3197367 | 5.56 | 52.08 | 5.85 | 5.66 | 5.41 | 5.91 | 0.13 | 0.19 | 0.01 | 1.58 | 0.00 | 0.12 |
| 3208251 | 7.22 | 28.08 | 7.62 | 6.29 | 6.15 | 6.43 | 0.07 | 1.33 | 0.00 | 1.58 | 0.00 | 0.84 |
| 3256527 | 6.11 | 40.08 | 5.69 | 5.94 | 5.75 | 6.13 | 0.10 | -0.25 | 0.00 | 1.58 | 0.00 | -0.16 |
| 3310927 | 7.22 | 21.08 | 5.38 | 6.41 | 6.29 | 6.53 | 0.06 | -1.02 | 0.00 | 1.58 | 0.00 | -0.65 |
| 3338127 | 5.00 | 21.08 | 2.00 | 6.12 | 5.95 | 6.28 | 0.08 | -4.12 | 0.00 | 1.58 | 0.01 | -2.60 |
| 3387771 | 6.67 | 27.08 | 5.38 | 6.23 | 6.09 | 6.37 | 0.07 | -0.85 | 0.00 | 1.58 | 0.00 | -0.54 |
| 3451007 | 7.22 | 38.08 | 3.77 | 6.12 | 5.94 | 6.30 | 0.09 | -2.35 | 0.00 | 1.58 | 0.00 | -1.49 |
| 3485687 | 7.78 | 15.08 | 8.38 | 6.59 | 6.46 | 6.71 | 0.06 | 1.80 | 0.00 | 1.58 | 0.00 | 1.14 |
| 3495207 | 10.00 | 37.08 | 5.77 | 6.50 | 6.26 | 6.75 | 0.12 | -0.74 | 0.01 | 1.58 | 0.00 | -0.47 |
| 3504731 | 7.22 | 30.08 | 5.08 | 6.26 | 6.11 | 6.41 | 0.08 | -1.18 | 0.00 | 1.58 | 0.00 | -0.75 |
| 3527847 | 5.56 | 45.08 | 5.31 | 5.78 | 5.56 | 6.00 | 0.11 | -0.47 | 0.01 | 1.58 | 0.00 | -0.30 |
| 3555047 | 5.00 | 19.08 | 7.62 | 6.15 | 5.99 | 6.31 | 0.08 | 1.47 | 0.00 | 1.58 | 0.00 | 0.93 |
| 3603327 | 0.83 | 44.08 | 7.54 | 5.17 | 4.78 | 5.56 | 0.20 | 2.37 | 0.02 | 1.58 | 0.01 | 1.51 |
| 3631887 | 2.78 | 29.08 | 4.54 | 5.68 | 5.41 | 5.96 | 0.14 | -1.15 | 0.01 | 1.58 | 0.00 | -0.73 |
| 3697167 | 8.33 | 35.08 | 6.08 | 6.32 | 6.13 | 6.50 | 0.09 | -0.24 | 0.00 | 1.58 | 0.00 | -0.15 |
| 3747491 | 5.00 | 19.08 | 4.08 | 6.15 | 5.99 | 6.31 | 0.08 | -2.07 | 0.00 | 1.58 | 0.00 | -1.31 |
| 3771287 | 10.00 | 14.08 | 6.10 | 6.90 | 6.70 | 7.10 | 0.10 | -0.80 | 0.00 | 1.58 | 0.00 | -0.50 |
| 3799851 | 5.00 | 34.08 | 7.54 | 5.89 | 5.70 | 6.09 | 0.10 | 1.64 | 0.00 | 1.58 | 0.00 | 1.04 |
| 3803247 | 3.33 | 30.08 | 8.54 | 5.74 | 5.49 | 5.99 | 0.13 | 2.80 | 0.01 | 1.58 | 0.01 | 1.77 |
| 3824331 | 6.67 | 38.08 | 2.69 | 6.05 | 5.87 | 6.23 | 0.09 | -3.35 | 0.00 | 1.58 | 0.01 | -2.12 |
| 3882135 | 10.00 | 44.08 | 5.46 | 6.39 | 6.12 | 6.65 | 0.14 | -0.92 | 0.01 | 1.58 | 0.00 | -0.59 |
| 3925647 | 4.44 | 19.08 | 4.92 | 6.08 | 5.90 | 6.26 | 0.09 | -1.15 | 0.00 | 1.58 | 0.00 | -0.73 |
| 3937891 | 10.00 | 14.08 | 6.38 | 6.90 | 6.70 | 7.10 | 0.10 | -0.51 | 0.00 | 1.58 | 0.00 | -0.32 |
| 4016767 | 6.67 | 40.08 | 6.46 | 6.01 | 5.82 | 6.20 | 0.10 | 0.45 | 0.00 | 1.58 | 0.00 | 0.28 |
| 4023571 | 10.00 | 34.08 | 7.83 | 6.56 | 6.32 | 6.79 | 0.12 | 1.27 | 0.01 | 1.58 | 0.00 | 0.81 |
| 4046687 | 8.89 | 32.08 | 7.92 | 6.44 | 6.25 | 6.63 | 0.10 | 1.48 | 0.00 | 1.58 | 0.00 | 0.94 |
| 4054171 | 8.89 | 17.08 | 8.77 | 6.70 | 6.54 | 6.86 | 0.08 | 2.07 | 0.00 | 1.58 | 0.00 | 1.31 |
| 4060291 | 6.11 | 24.08 | 5.23 | 6.21 | 6.07 | 6.35 | 0.07 | -0.98 | 0.00 | 1.58 | 0.00 | -0.62 |
| 4084767 | 6.67 | 29.08 | 3.31 | 6.20 | 6.05 | 6.35 | 0.07 | -2.89 | 0.00 | 1.58 | 0.00 | -1.83 |
| 4111287 | 8.33 | 37.08 | 6.00 | 6.28 | 6.09 | 6.48 | 0.10 | -0.28 | 0.00 | 1.58 | 0.00 | -0.18 |
| 4135087 | 6.67 | 36.08 | 6.31 | 6.08 | 5.91 | 6.25 | 0.09 | 0.23 | 0.00 | 1.58 | 0.00 | 0.14 |
| 4149367 | 5.56 | 39.08 | 8.54 | 5.88 | 5.68 | 6.08 | 0.10 | 2.66 | 0.00 | 1.58 | 0.00 | 1.68 |
| 4152771 | 9.44 | 30.08 | 6.38 | 6.55 | 6.35 | 6.75 | 0.10 | -0.17 | 0.00 | 1.58 | 0.00 | -0.10 |
| 4160247 | 7.78 | 37.08 | 7.08 | 6.21 | 6.03 | 6.39 | 0.09 | 0.87 | 0.00 | 1.58 | 0.00 | 0.55 |
| 4170447 | 10.00 | -0.92 | 7.69 | 7.15 | 6.95 | 7.36 | 0.11 | 0.54 | 0.00 | 1.58 | 0.00 | 0.34 |
| 4177251 | 6.67 | 19.08 | 4.29 | 6.37 | 6.25 | 6.49 | 0.06 | -2.08 | 0.00 | 1.58 | 0.00 | -1.32 |
| 4178607 | 6.67 | 38.08 | 8.08 | 6.05 | 5.87 | 6.23 | 0.09 | 2.03 | 0.00 | 1.58 | 0.00 | 1.28 |
| 4227567 | 3.33 | 35.08 | 6.77 | 5.66 | 5.40 | 5.91 | 0.13 | 1.11 | 0.01 | 1.58 | 0.00 | 0.71 |
| 4229611 | 4.44 | 4.08 | 7.31 | 6.33 | 6.16 | 6.51 | 0.09 | 0.98 | 0.00 | 1.58 | 0.00 | 0.62 |
| 4232339 | 6.11 | -28.92 | 6.92 | 7.11 | 6.89 | 7.34 | 0.11 | -0.19 | 0.01 | 1.58 | 0.00 | -0.12 |
| 4260891 | 3.33 | 12.08 | 2.85 | 6.05 | 5.82 | 6.27 | 0.11 | -3.20 | 0.01 | 1.58 | 0.01 | -2.03 |
| 4289447 | 3.33 | 40.08 | 6.00 | 5.57 | 5.30 | 5.84 | 0.14 | 0.43 | 0.01 | 1.58 | 0.00 | 0.27 |
| 4293527 | 10.00 | 35.08 | 3.31 | 6.54 | 6.30 | 6.78 | 0.12 | -3.23 | 0.01 | 1.58 | 0.01 | -2.05 |
| 4311207 | 6.67 | 36.08 | 5.85 | 6.08 | 5.91 | 6.25 | 0.09 | -0.23 | 0.00 | 1.58 | 0.00 | -0.15 |
| 4313927 | 8.33 | 46.08 | 4.00 | 6.13 | 5.90 | 6.36 | 0.12 | -2.13 | 0.01 | 1.58 | 0.00 | -1.35 |
| 4366287 | 6.11 | 39.08 | 6.23 | 5.96 | 5.77 | 6.14 | 0.10 | 0.28 | 0.00 | 1.58 | 0.00 | 0.17 |
| 4433607 | 6.67 | 36.08 | 5.77 | 6.08 | 5.91 | 6.25 | 0.09 | -0.31 | 0.00 | 1.58 | 0.00 | -0.20 |
| 4474411 | 6.67 | 32.08 | 6.69 | 6.15 | 5.99 | 6.31 | 0.08 | 0.54 | 0.00 | 1.58 | 0.00 | 0.34 |
| 4508411 | 7.22 | 41.08 | 6.92 | 6.07 | 5.88 | 6.26 | 0.10 | 0.85 | 0.00 | 1.58 | 0.00 | 0.54 |
| 4543091 | 7.22 | 32.08 | 5.69 | 6.22 | 6.06 | 6.38 | 0.08 | -0.53 | 0.00 | 1.58 | 0.00 | -0.33 |
| 4570287 | 9.44 | 22.08 | 4.08 | 6.69 | 6.50 | 6.87 | 0.10 | -2.61 | 0.00 | 1.58 | 0.00 | -1.65 |
| 4609047 | 6.67 | 40.08 | 6.68 | 6.01 | 5.82 | 6.20 | 0.10 | 0.66 | 0.00 | 1.58 | 0.00 | 0.42 |
| 4616527 | 8.33 | 26.08 | 5.33 | 6.47 | 6.31 | 6.63 | 0.08 | -1.15 | 0.00 | 1.58 | 0.00 | -0.72 |
| 4636251 | 10.00 | 16.08 | 3.46 | 6.86 | 6.66 | 7.07 | 0.10 | -3.40 | 0.00 | 1.58 | 0.01 | -2.15 |
| 4760687 | 7.22 | 33.08 | 8.85 | 6.21 | 6.04 | 6.37 | 0.08 | 2.64 | 0.00 | 1.58 | 0.00 | 1.67 |
| 4767487 | 5.56 | 8.08 | 6.62 | 6.41 | 6.28 | 6.54 | 0.07 | 0.20 | 0.00 | 1.58 | 0.00 | 0.13 |
| 4768171 | 5.00 | 8.08 | 5.54 | 6.34 | 6.19 | 6.49 | 0.08 | -0.80 | 0.00 | 1.58 | 0.00 | -0.50 |
| 4815087 | 5.00 | 34.08 | 5.23 | 5.89 | 5.70 | 6.09 | 0.10 | -0.66 | 0.00 | 1.58 | 0.00 | -0.42 |
| 4823931 | 8.33 | 35.08 | 5.69 | 6.32 | 6.13 | 6.50 | 0.09 | -0.63 | 0.00 | 1.58 | 0.00 | -0.40 |
| 4825967 | 4.44 | 25.08 | 7.15 | 5.97 | 5.78 | 6.16 | 0.10 | 1.18 | 0.00 | 1.58 | 0.00 | 0.75 |
| 4842291 | 5.56 | 26.08 | 5.92 | 6.10 | 5.95 | 6.26 | 0.08 | -0.18 | 0.00 | 1.58 | 0.00 | -0.11 |
| 4847727 | 5.56 | 23.08 | 4.92 | 6.15 | 6.01 | 6.30 | 0.08 | -1.23 | 0.00 | 1.58 | 0.00 | -0.78 |
| 4849771 | 7.22 | 22.08 | 4.54 | 6.39 | 6.27 | 6.52 | 0.06 | -1.85 | 0.00 | 1.58 | 0.00 | -1.17 |
| 4857255 | 2.78 | -5.92 | 7.77 | 6.28 | 6.02 | 6.55 | 0.13 | 1.49 | 0.01 | 1.58 | 0.00 | 0.94 |
| 5427775 | 7.78 | 9.08 | 8.79 | 6.69 | 6.57 | 6.81 | 0.06 | 2.10 | 0.00 | 1.58 | 0.00 | 1.33 |
| 5652851 | 7.78 | 15.08 | 5.59 | 6.59 | 6.46 | 6.71 | 0.06 | -0.99 | 0.00 | 1.58 | 0.00 | -0.63 |
| 6548564 | 5.56 | -20.92 | 8.08 | 6.90 | 6.70 | 7.11 | 0.10 | 1.17 | 0.00 | 1.58 | 0.00 | 0.74 |
| 9288884 | 8.89 | 11.08 | 7.50 | 6.80 | 6.65 | 6.95 | 0.08 | 0.70 | 0.00 | 1.58 | 0.00 | 0.44 |
| 11247404 | 7.78 | 13.08 | 2.88 | 6.62 | 6.50 | 6.74 | 0.06 | -3.73 | 0.00 | 1.58 | 0.00 | -2.36 |
| 11866084 | 5.56 | 37.08 | 7.50 | 5.92 | 5.73 | 6.11 | 0.10 | 1.58 | 0.00 | 1.58 | 0.00 | 1.00 |
| 12444084 | 7.78 | 19.08 | 4.62 | 6.52 | 6.39 | 6.64 | 0.06 | -1.90 | 0.00 | 1.58 | 0.00 | -1.20 |
| 13171764 | 10.00 | 13.08 | 9.23 | 6.91 | 6.71 | 7.12 | 0.10 | 2.32 | 0.00 | 1.58 | 0.00 | 1.47 |
| 22596482 | 7.22 | -12.92 | 6.10 | 6.99 | 6.83 | 7.15 | 0.08 | -0.89 | 0.00 | 1.58 | 0.00 | -0.56 |
| 22929722 | 10.00 | 38.08 | 7.31 | 6.49 | 6.24 | 6.73 | 0.13 | 0.82 | 0.01 | 1.58 | 0.00 | 0.52 |
| 25207642 | 8.89 | 30.08 | 7.25 | 6.48 | 6.29 | 6.66 | 0.09 | 0.78 | 0.00 | 1.58 | 0.00 | 0.49 |
| 25316442 | 6.67 | 38.08 | 7.09 | 6.05 | 5.87 | 6.23 | 0.09 | 1.04 | 0.00 | 1.58 | 0.00 | 0.66 |
| 25853682 | 8.33 | 30.08 | 3.30 | 6.40 | 6.23 | 6.57 | 0.09 | -3.11 | 0.00 | 1.58 | 0.00 | -1.96 |
| 25942082 | 5.56 | 29.08 | 3.79 | 6.05 | 5.89 | 6.22 | 0.08 | -2.26 | 0.00 | 1.58 | 0.00 | -1.43 |
| 26118842 | 8.89 | 45.08 | 7.25 | 6.22 | 5.99 | 6.46 | 0.12 | 1.03 | 0.01 | 1.58 | 0.00 | 0.65 |
| 26452122 | 9.44 | -28.92 | 8.08 | 7.56 | 7.30 | 7.82 | 0.13 | 0.52 | 0.01 | 1.58 | 0.00 | 0.33 |
| 26683282 | 7.22 | 42.08 | 3.79 | 6.05 | 5.86 | 6.25 | 0.10 | -2.26 | 0.00 | 1.58 | 0.00 | -1.43 |
| 26771642 | 5.56 | -0.92 | 3.92 | 6.56 | 6.42 | 6.71 | 0.07 | -2.64 | 0.00 | 1.58 | 0.00 | -1.67 |
| 26792082 | 6.67 | 34.08 | 5.38 | 6.11 | 5.95 | 6.28 | 0.08 | -0.73 | 0.00 | 1.58 | 0.00 | -0.46 |
| 26873642 | 4.44 | -20.92 | 7.69 | 6.76 | 6.53 | 6.99 | 0.12 | 0.93 | 0.01 | 1.58 | 0.00 | 0.59 |
| 27043642 | 3.89 | 38.08 | 5.27 | 5.68 | 5.43 | 5.92 | 0.12 | -0.40 | 0.01 | 1.58 | 0.00 | -0.26 |
| 27240842 | 6.67 | 24.08 | 6.26 | 6.28 | 6.15 | 6.42 | 0.07 | -0.02 | 0.00 | 1.58 | 0.00 | -0.01 |
| 27417642 | 8.33 | 38.08 | 6.54 | 6.27 | 6.07 | 6.46 | 0.10 | 0.27 | 0.00 | 1.58 | 0.00 | 0.17 |
| 27689642 | 6.11 | 44.08 | 6.10 | 5.87 | 5.66 | 6.08 | 0.11 | 0.23 | 0.00 | 1.58 | 0.00 | 0.14 |
| 27873242 | 5.00 | 23.08 | 7.09 | 6.08 | 5.92 | 6.25 | 0.08 | 1.01 | 0.00 | 1.58 | 0.00 | 0.64 |
| 27961722 | 7.22 | 19.08 | 7.12 | 6.44 | 6.32 | 6.56 | 0.06 | 0.67 | 0.00 | 1.58 | 0.00 | 0.42 |
| 27968482 | 4.44 | 42.08 | 4.95 | 5.68 | 5.45 | 5.92 | 0.12 | -0.74 | 0.01 | 1.58 | 0.00 | -0.47 |
| 28417242 | 5.83 | 32.08 | 5.93 | 6.04 | 5.87 | 6.21 | 0.09 | -0.10 | 0.00 | 1.58 | 0.00 | -0.07 |
| 28451242 | 5.00 | 34.08 | 7.42 | 5.89 | 5.70 | 6.09 | 0.10 | 1.52 | 0.00 | 1.58 | 0.00 | 0.96 |
| 28458082 | 5.56 | 32.08 | 6.10 | 6.00 | 5.83 | 6.17 | 0.09 | 0.10 | 0.00 | 1.58 | 0.00 | 0.06 |
| 29172082 | 10.00 | 36.08 | 6.43 | 6.52 | 6.28 | 6.76 | 0.12 | -0.09 | 0.01 | 1.58 | 0.00 | -0.06 |
| 30103642 | 7.78 | 8.08 | 3.96 | 6.70 | 6.59 | 6.82 | 0.06 | -2.75 | 0.00 | 1.58 | 0.00 | -1.74 |
| 30341682 | 5.00 | 30.08 | 5.27 | 5.96 | 5.78 | 6.14 | 0.09 | -0.69 | 0.00 | 1.58 | 0.00 | -0.43 |
| 30450442 | 8.33 | 22.08 | 5.27 | 6.54 | 6.39 | 6.69 | 0.07 | -1.26 | 0.00 | 1.58 | 0.00 | -0.80 |
| 30708882 | 9.44 | 15.08 | 8.77 | 6.81 | 6.63 | 6.98 | 0.09 | 1.96 | 0.00 | 1.58 | 0.00 | 1.24 |
| 31756082 | 6.67 | 26.08 | 5.93 | 6.25 | 6.11 | 6.39 | 0.07 | -0.32 | 0.00 | 1.58 | 0.00 | -0.20 |
| 31851242 | 5.56 | 37.08 | 5.60 | 5.92 | 5.73 | 6.11 | 0.10 | -0.31 | 0.00 | 1.58 | 0.00 | -0.20 |
| 31864842 | 10.00 | 37.08 | 3.30 | 6.50 | 6.26 | 6.75 | 0.12 | -3.21 | 0.01 | 1.58 | 0.01 | -2.03 |
| 32456482 | 8.33 | 19.08 | 3.85 | 6.59 | 6.45 | 6.73 | 0.07 | -2.74 | 0.00 | 1.58 | 0.00 | -1.73 |
| 32619722 | 7.22 | -3.92 | 4.12 | 6.84 | 6.71 | 6.96 | 0.07 | -2.71 | 0.00 | 1.58 | 0.00 | -1.72 |
| 32626442 | 3.33 | 31.08 | 5.93 | 5.72 | 5.47 | 5.97 | 0.13 | 0.21 | 0.01 | 1.58 | 0.00 | 0.13 |
| 32735242 | 7.22 | 15.08 | 9.23 | 6.51 | 6.40 | 6.62 | 0.06 | 2.72 | 0.00 | 1.58 | 0.00 | 1.72 |
| 32918842 | 6.67 | -2.92 | 3.79 | 6.75 | 6.62 | 6.87 | 0.06 | -2.95 | 0.00 | 1.58 | 0.00 | -1.87 |
| 33265642 | 6.67 | 31.08 | 5.77 | 6.17 | 6.01 | 6.32 | 0.08 | -0.40 | 0.00 | 1.58 | 0.00 | -0.25 |
| 33741642 | 6.67 | 30.08 | 3.79 | 6.18 | 6.03 | 6.33 | 0.08 | -2.39 | 0.00 | 1.58 | 0.00 | -1.51 |
| 33816442 | 9.44 | 3.08 | 8.90 | 7.01 | 6.83 | 7.19 | 0.09 | 1.89 | 0.00 | 1.58 | 0.00 | 1.20 |
| 33870882 | 8.33 | 39.08 | 5.44 | 6.25 | 6.05 | 6.45 | 0.10 | -0.81 | 0.00 | 1.58 | 0.00 | -0.51 |
| 33966042 | 7.22 | 28.08 | 5.93 | 6.29 | 6.15 | 6.43 | 0.07 | -0.36 | 0.00 | 1.58 | 0.00 | -0.23 |
| 34068042 | 6.11 | 30.08 | 7.25 | 6.11 | 5.95 | 6.26 | 0.08 | 1.14 | 0.00 | 1.58 | 0.00 | 0.72 |
| 34387642 | 3.33 | 25.08 | 3.63 | 5.83 | 5.59 | 6.06 | 0.12 | -2.20 | 0.01 | 1.58 | 0.00 | -1.39 |
| 34544042 | 3.33 | 27.08 | 6.15 | 5.79 | 5.55 | 6.03 | 0.12 | 0.36 | 0.01 | 1.58 | 0.00 | 0.23 |
| 34571242 | 6.67 | 36.08 | 5.60 | 6.08 | 5.91 | 6.25 | 0.09 | -0.48 | 0.00 | 1.58 | 0.00 | -0.30 |
| 34748042 | 6.67 | 15.08 | 5.27 | 6.44 | 6.33 | 6.55 | 0.06 | -1.16 | 0.00 | 1.58 | 0.00 | -0.74 |
| 34754842 | 8.33 | 32.08 | 5.44 | 6.37 | 6.19 | 6.54 | 0.09 | -0.93 | 0.00 | 1.58 | 0.00 | -0.59 |
| 35026882 | 6.67 | 40.08 | 5.93 | 6.01 | 5.82 | 6.20 | 0.10 | -0.08 | 0.00 | 1.58 | 0.00 | -0.05 |
| 35108442 | 7.22 | 19.08 | 3.96 | 6.44 | 6.32 | 6.56 | 0.06 | -2.49 | 0.00 | 1.58 | 0.00 | -1.57 |
| 35271642 | 8.33 | 6.08 | 3.79 | 6.81 | 6.68 | 6.95 | 0.07 | -3.02 | 0.00 | 1.58 | 0.00 | -1.91 |
| 35666042 | 6.67 | 41.08 | 5.77 | 6.00 | 5.80 | 6.19 | 0.10 | -0.23 | 0.00 | 1.58 | 0.00 | -0.14 |
| 35672842 | 6.67 | 40.08 | 5.77 | 6.01 | 5.82 | 6.20 | 0.10 | -0.24 | 0.00 | 1.58 | 0.00 | -0.15 |
| 36577242 | 5.00 | 16.08 | 5.11 | 6.20 | 6.05 | 6.36 | 0.08 | -1.09 | 0.00 | 1.58 | 0.00 | -0.69 |
| 36822042 | 10.00 | 25.08 | 8.08 | 6.71 | 6.49 | 6.92 | 0.11 | 1.37 | 0.00 | 1.58 | 0.00 | 0.87 |
| 36985242 | 10.00 | 27.08 | 5.27 | 6.68 | 6.46 | 6.89 | 0.11 | -1.40 | 0.00 | 1.58 | 0.00 | -0.89 |
| 37250442 | 6.11 | -1.92 | 7.09 | 6.65 | 6.52 | 6.78 | 0.07 | 0.43 | 0.00 | 1.58 | 0.00 | 0.27 |
| 37495282 | 5.56 | 20.08 | 7.91 | 6.21 | 6.06 | 6.35 | 0.07 | 1.71 | 0.00 | 1.58 | 0.00 | 1.08 |
| 37916842 | 7.22 | 40.08 | 7.42 | 6.09 | 5.90 | 6.27 | 0.10 | 1.33 | 0.00 | 1.58 | 0.00 | 0.84 |
| 38474442 | 6.11 | 22.08 | 6.43 | 6.25 | 6.11 | 6.38 | 0.07 | 0.18 | 0.00 | 1.58 | 0.00 | 0.12 |
| 38488082 | 10.00 | 12.08 | 5.27 | 6.93 | 6.73 | 7.13 | 0.10 | -1.66 | 0.00 | 1.58 | 0.00 | -1.05 |
| 38712442 | 5.56 | 20.08 | 3.46 | 6.21 | 6.06 | 6.35 | 0.07 | -2.74 | 0.00 | 1.58 | 0.00 | -1.73 |
| 38766842 | 7.78 | 33.08 | 4.45 | 6.28 | 6.11 | 6.45 | 0.09 | -1.83 | 0.00 | 1.58 | 0.00 | -1.16 |
| 38964042 | 6.67 | 25.08 | 4.29 | 6.27 | 6.13 | 6.40 | 0.07 | -1.98 | 0.00 | 1.58 | 0.00 | -1.25 |
| 39032042 | 3.33 | 28.08 | 8.24 | 5.78 | 5.53 | 6.02 | 0.12 | 2.47 | 0.01 | 1.58 | 0.01 | 1.56 |
| 39657642 | 5.00 | 35.08 | 6.43 | 5.88 | 5.68 | 6.07 | 0.10 | 0.55 | 0.00 | 1.58 | 0.00 | 0.35 |
| 39678042 | 5.00 | 36.08 | 5.11 | 5.86 | 5.66 | 6.06 | 0.10 | -0.75 | 0.00 | 1.58 | 0.00 | -0.47 |
| 40126842 | 10.00 | 33.08 | 4.95 | 6.57 | 6.34 | 6.81 | 0.12 | -1.63 | 0.01 | 1.58 | 0.00 | -1.03 |
| 40269642 | 5.56 | 33.08 | 6.10 | 5.98 | 5.81 | 6.16 | 0.09 | 0.11 | 0.00 | 1.58 | 0.00 | 0.07 |
| 40392042 | 7.22 | 31.08 | 6.59 | 6.24 | 6.09 | 6.39 | 0.08 | 0.35 | 0.00 | 1.58 | 0.00 | 0.22 |
| 40432842 | 7.22 | 23.08 | 8.24 | 6.38 | 6.25 | 6.50 | 0.07 | 1.87 | 0.00 | 1.58 | 0.00 | 1.18 |
| 40439642 | 4.44 | 28.08 | 5.11 | 5.92 | 5.73 | 6.12 | 0.10 | -0.81 | 0.00 | 1.58 | 0.00 | -0.51 |
| 40589282 | 7.78 | 15.08 | 6.10 | 6.59 | 6.46 | 6.71 | 0.06 | -0.49 | 0.00 | 1.58 | 0.00 | -0.31 |
| 40602842 | 1.67 | 9.08 | 2.31 | 5.88 | 5.57 | 6.19 | 0.16 | -3.57 | 0.01 | 1.58 | 0.02 | -2.27 |
| 40623242 | 0.00 | 40.08 | 7.09 | 5.13 | 4.71 | 5.55 | 0.22 | 1.96 | 0.02 | 1.58 | 0.01 | 1.25 |
| 41065282 | 3.89 | 22.08 | 3.79 | 5.95 | 5.74 | 6.16 | 0.11 | -2.16 | 0.00 | 1.58 | 0.00 | -1.37 |
| 41357642 | 7.22 | 23.08 | 3.30 | 6.38 | 6.25 | 6.50 | 0.07 | -3.08 | 0.00 | 1.58 | 0.00 | -1.95 |
| 41364442 | 6.67 | 32.08 | 5.77 | 6.15 | 5.99 | 6.31 | 0.08 | -0.38 | 0.00 | 1.58 | 0.00 | -0.24 |
| 41595642 | 7.22 | 32.08 | 9.23 | 6.22 | 6.06 | 6.38 | 0.08 | 3.01 | 0.00 | 1.58 | 0.00 | 1.90 |
| 41745242 | 8.33 | 35.08 | 8.24 | 6.32 | 6.13 | 6.50 | 0.09 | 1.92 | 0.00 | 1.58 | 0.00 | 1.22 |
| 41752042 | 10.00 | 47.08 | 9.23 | 6.33 | 6.06 | 6.61 | 0.14 | 2.90 | 0.01 | 1.58 | 0.01 | 1.84 |
| 42187242 | 4.44 | 32.08 | 6.43 | 5.85 | 5.65 | 6.06 | 0.11 | 0.57 | 0.00 | 1.58 | 0.00 | 0.36 |
| 42602042 | 3.89 | 53.08 | 5.93 | 5.42 | 5.13 | 5.72 | 0.15 | 0.51 | 0.01 | 1.58 | 0.00 | 0.32 |
| 42656442 | 7.78 | 26.08 | 7.42 | 6.40 | 6.25 | 6.54 | 0.07 | 1.02 | 0.00 | 1.58 | 0.00 | 0.64 |
| 42670042 | 10.00 | 15.08 | 6.26 | 6.88 | 6.68 | 7.08 | 0.10 | -0.62 | 0.00 | 1.58 | 0.00 | -0.39 |
| 42690442 | 6.67 | 35.08 | 6.92 | 6.10 | 5.93 | 6.27 | 0.09 | 0.83 | 0.00 | 1.58 | 0.00 | 0.52 |
| 42778842 | 7.78 | 22.08 | 8.57 | 6.47 | 6.33 | 6.60 | 0.07 | 2.11 | 0.00 | 1.58 | 0.00 | 1.33 |
| 42812882 | 5.00 | 38.08 | 6.59 | 5.83 | 5.62 | 6.03 | 0.11 | 0.77 | 0.00 | 1.58 | 0.00 | 0.49 |
| 42914842 | 9.17 | 37.08 | 2.64 | 6.39 | 6.18 | 6.61 | 0.11 | -3.76 | 0.00 | 1.58 | 0.01 | -2.38 |
| 42962442 | 7.22 | 8.08 | 4.23 | 6.63 | 6.52 | 6.74 | 0.06 | -2.40 | 0.00 | 1.58 | 0.00 | -1.52 |
| 43275282 | 7.22 | 27.08 | 6.73 | 6.31 | 6.17 | 6.45 | 0.07 | 0.42 | 0.00 | 1.58 | 0.00 | 0.27 |
| 43418082 | 3.33 | 30.08 | 9.07 | 5.74 | 5.49 | 5.99 | 0.13 | 3.32 | 0.01 | 1.58 | 0.01 | 2.11 |
| 47899242 | 4.44 | 40.08 | 5.96 | 5.72 | 5.49 | 5.95 | 0.12 | 0.24 | 0.01 | 1.58 | 0.00 | 0.15 |
| 49198042 | 6.11 | 8.08 | 4.62 | 6.48 | 6.37 | 6.60 | 0.06 | -1.87 | 0.00 | 1.58 | 0.00 | -1.18 |
| 49592442 | 10.00 | 20.08 | 3.27 | 6.79 | 6.59 | 7.00 | 0.11 | -3.53 | 0.00 | 1.58 | 0.01 | -2.23 |
| 52162882 | 3.89 | -3.92 | 6.23 | 6.39 | 6.18 | 6.60 | 0.11 | -0.16 | 0.00 | 1.58 | 0.00 | -0.10 |
| 54032962 | 7.78 | 12.08 | 7.15 | 6.64 | 6.52 | 6.75 | 0.06 | 0.52 | 0.00 | 1.58 | 0.00 | 0.33 |
| 54400042 | 8.89 | 23.08 | 5.31 | 6.60 | 6.43 | 6.76 | 0.09 | -1.29 | 0.00 | 1.58 | 0.00 | -0.81 |
| 54434082 | 6.11 | 23.08 | 6.00 | 6.23 | 6.09 | 6.36 | 0.07 | -0.23 | 0.00 | 1.58 | 0.00 | -0.14 |
| 54644882 | 8.89 | 28.08 | 7.38 | 6.51 | 6.33 | 6.69 | 0.09 | 0.87 | 0.00 | 1.58 | 0.00 | 0.55 |
| 54760442 | 10.00 | 20.08 | 5.08 | 6.79 | 6.59 | 7.00 | 0.11 | -1.72 | 0.00 | 1.58 | 0.00 | -1.09 |
| 55100442 | 4.44 | -5.92 | 3.92 | 6.50 | 6.31 | 6.69 | 0.10 | -2.58 | 0.00 | 1.58 | 0.00 | -1.63 |
| 55420042 | 7.22 | 32.08 | 7.15 | 6.22 | 6.06 | 6.38 | 0.08 | 0.93 | 0.00 | 1.58 | 0.00 | 0.59 |
| 55569642 | 8.89 | 31.08 | 6.69 | 6.46 | 6.27 | 6.65 | 0.10 | 0.23 | 0.00 | 1.58 | 0.00 | 0.15 |
| 56385642 | 5.00 | 25.08 | 3.92 | 6.05 | 5.88 | 6.22 | 0.09 | -2.12 | 0.00 | 1.58 | 0.00 | -1.34 |
| 56487642 | 7.78 | 38.08 | 6.00 | 6.19 | 6.01 | 6.38 | 0.09 | -0.19 | 0.00 | 1.58 | 0.00 | -0.12 |
| 56841242 | 10.00 | 38.08 | 4.62 | 6.49 | 6.24 | 6.73 | 0.13 | -1.87 | 0.01 | 1.58 | 0.00 | -1.19 |
| 56882042 | 7.22 | 28.08 | 7.38 | 6.29 | 6.15 | 6.43 | 0.07 | 1.09 | 0.00 | 1.58 | 0.00 | 0.69 |
| 57140442 | 5.00 | 20.08 | 5.54 | 6.13 | 5.97 | 6.29 | 0.08 | -0.59 | 0.00 | 1.58 | 0.00 | -0.38 |
| 57201642 | 5.00 | 17.08 | 4.33 | 6.18 | 6.03 | 6.34 | 0.08 | -1.86 | 0.00 | 1.58 | 0.00 | -1.17 |
| 57256082 | 5.00 | 5.08 | 5.54 | 6.39 | 6.24 | 6.54 | 0.08 | -0.85 | 0.00 | 1.58 | 0.00 | -0.54 |
| 57630042 | 7.78 | 30.08 | 2.77 | 6.33 | 6.17 | 6.49 | 0.08 | -3.56 | 0.00 | 1.58 | 0.00 | -2.25 |
| 57636842 | 5.56 | 31.08 | 5.08 | 6.02 | 5.85 | 6.19 | 0.09 | -0.94 | 0.00 | 1.58 | 0.00 | -0.60 |
| 57677642 | 6.67 | 35.08 | 5.31 | 6.10 | 5.93 | 6.27 | 0.09 | -0.79 | 0.00 | 1.58 | 0.00 | -0.50 |
| 58085642 | 8.33 | 46.08 | 7.38 | 6.13 | 5.90 | 6.36 | 0.12 | 1.25 | 0.01 | 1.58 | 0.00 | 0.79 |
| 58371282 | 10.00 | 20.08 | 1.85 | 6.79 | 6.59 | 7.00 | 0.11 | -4.95 | 0.00 | 1.58 | 0.01 | -3.13 |
| 58616042 | 8.33 | 32.08 | 6.69 | 6.37 | 6.19 | 6.54 | 0.09 | 0.32 | 0.00 | 1.58 | 0.00 | 0.20 |
| 59316442 | 10.00 | 30.08 | 6.92 | 6.62 | 6.40 | 6.85 | 0.12 | 0.30 | 0.01 | 1.58 | 0.00 | 0.19 |
| 59819642 | 4.44 | 32.08 | 4.62 | 5.85 | 5.65 | 6.06 | 0.11 | -1.24 | 0.00 | 1.58 | 0.00 | -0.78 |
| 59833242 | 7.22 | 33.08 | 7.15 | 6.21 | 6.04 | 6.37 | 0.08 | 0.95 | 0.00 | 1.58 | 0.00 | 0.60 |
| 60010042 | 3.33 | 26.08 | 3.92 | 5.81 | 5.57 | 6.05 | 0.12 | -1.89 | 0.01 | 1.58 | 0.00 | -1.19 |
| 60146042 | 6.67 | 44.08 | 4.62 | 5.94 | 5.74 | 6.15 | 0.10 | -1.33 | 0.00 | 1.58 | 0.00 | -0.84 |
| 60384042 | 5.00 | 30.08 | 3.92 | 5.96 | 5.78 | 6.14 | 0.09 | -2.04 | 0.00 | 1.58 | 0.00 | -1.29 |
| 60941642 | 6.11 | 34.08 | 8.31 | 6.04 | 5.87 | 6.21 | 0.09 | 2.27 | 0.00 | 1.58 | 0.00 | 1.43 |
| 61512842 | 6.67 | 25.08 | 5.54 | 6.27 | 6.13 | 6.40 | 0.07 | -0.73 | 0.00 | 1.58 | 0.00 | -0.46 |
| 61669242 | 9.44 | -5.92 | 5.54 | 7.16 | 6.97 | 7.36 | 0.10 | -1.63 | 0.00 | 1.58 | 0.00 | -1.03 |
| 62002482 | 10.00 | 25.08 | 6.06 | 6.71 | 6.49 | 6.92 | 0.11 | -0.65 | 0.00 | 1.58 | 0.00 | -0.41 |
| 62689242 | 10.00 | 35.08 | 3.92 | 6.54 | 6.30 | 6.78 | 0.12 | -2.62 | 0.01 | 1.58 | 0.01 | -1.66 |
| 62859242 | 9.44 | 13.08 | 6.46 | 6.84 | 6.66 | 7.02 | 0.09 | -0.38 | 0.00 | 1.58 | 0.00 | -0.24 |
| 62913642 | 9.44 | 30.08 | 3.46 | 6.55 | 6.35 | 6.75 | 0.10 | -3.09 | 0.00 | 1.58 | 0.01 | -1.95 |
| 63049642 | 7.78 | -1.92 | 5.54 | 6.88 | 6.74 | 7.01 | 0.07 | -1.34 | 0.00 | 1.58 | 0.00 | -0.84 |
| 63124442 | 2.78 | 34.08 | 6.00 | 5.60 | 5.32 | 5.88 | 0.14 | 0.40 | 0.01 | 1.58 | 0.00 | 0.25 |
| 63410042 | 10.00 | 25.08 | 7.38 | 6.71 | 6.49 | 6.92 | 0.11 | 0.68 | 0.00 | 1.58 | 0.00 | 0.43 |
| 63580042 | 10.00 | 20.08 | 2.77 | 6.79 | 6.59 | 7.00 | 0.11 | -4.03 | 0.00 | 1.58 | 0.01 | -2.55 |
| 64022082 | 5.00 | 15.08 | 3.46 | 6.22 | 6.06 | 6.37 | 0.08 | -2.76 | 0.00 | 1.58 | 0.00 | -1.74 |
| 64328042 | 7.78 | -0.92 | 6.00 | 6.86 | 6.73 | 6.99 | 0.07 | -0.86 | 0.00 | 1.58 | 0.00 | -0.54 |
| 64749642 | 2.78 | -1.92 | 2.77 | 6.21 | 5.95 | 6.47 | 0.13 | -3.44 | 0.01 | 1.58 | 0.01 | -2.18 |
| 64797242 | 8.33 | 25.08 | 5.54 | 6.49 | 6.33 | 6.64 | 0.08 | -0.95 | 0.00 | 1.58 | 0.00 | -0.60 |
| 64865242 | 5.56 | 33.08 | 2.77 | 5.98 | 5.81 | 6.16 | 0.09 | -3.22 | 0.00 | 1.58 | 0.00 | -2.03 |
| 64872082 | 8.33 | 40.08 | 6.23 | 6.23 | 6.03 | 6.44 | 0.10 | 0.00 | 0.00 | 1.58 | 0.00 | 0.00 |
| 64878842 | 5.00 | 30.08 | 3.92 | 5.96 | 5.78 | 6.14 | 0.09 | -2.04 | 0.00 | 1.58 | 0.00 | -1.29 |
| 65314042 | 7.78 | 17.08 | 4.15 | 6.55 | 6.43 | 6.67 | 0.06 | -2.40 | 0.00 | 1.58 | 0.00 | -1.52 |
| 65504442 | 7.78 | 31.08 | 5.31 | 6.31 | 6.15 | 6.47 | 0.08 | -1.01 | 0.00 | 1.58 | 0.00 | -0.64 |
| 66327242 | 6.11 | 6.08 | 5.77 | 6.52 | 6.40 | 6.64 | 0.06 | -0.75 | 0.00 | 1.58 | 0.00 | -0.47 |
| 66408842 | 5.00 | 29.08 | 6.23 | 5.98 | 5.80 | 6.16 | 0.09 | 0.25 | 0.00 | 1.58 | 0.00 | 0.16 |
| 66653642 | 6.11 | 18.08 | 5.08 | 6.31 | 6.19 | 6.44 | 0.06 | -1.24 | 0.00 | 1.58 | 0.00 | -0.78 |
| 66755642 | 5.00 | 34.08 | 8.77 | 5.89 | 5.70 | 6.09 | 0.10 | 2.88 | 0.00 | 1.58 | 0.00 | 1.82 |
| 66857642 | 10.00 | 18.08 | 5.08 | 6.83 | 6.62 | 7.03 | 0.10 | -1.75 | 0.00 | 1.58 | 0.00 | -1.11 |
| 66891642 | 7.22 | 25.08 | 3.46 | 6.34 | 6.21 | 6.48 | 0.07 | -2.88 | 0.00 | 1.58 | 0.00 | -1.82 |
| 67020842 | 8.33 | 24.08 | 7.38 | 6.51 | 6.35 | 6.66 | 0.08 | 0.88 | 0.00 | 1.58 | 0.00 | 0.56 |
| 67136442 | 2.78 | 35.08 | 5.31 | 5.58 | 5.30 | 5.87 | 0.14 | -0.27 | 0.01 | 1.58 | 0.00 | -0.17 |
| 67190842 | 6.67 | 25.08 | 2.54 | 6.27 | 6.13 | 6.40 | 0.07 | -3.73 | 0.00 | 1.58 | 0.00 | -2.36 |
| 67252042 | 3.89 | 16.08 | 3.00 | 6.05 | 5.85 | 6.25 | 0.10 | -3.05 | 0.00 | 1.58 | 0.01 | -1.93 |
| 67381322 | 6.11 | -27.92 | 7.31 | 7.10 | 6.88 | 7.32 | 0.11 | 0.21 | 0.01 | 1.58 | 0.00 | 0.13 |
| 67666922 | 3.89 | 38.08 | 6.23 | 5.68 | 5.43 | 5.92 | 0.12 | 0.55 | 0.01 | 1.58 | 0.00 | 0.35 |
broom::augment()broom::augment()broom::augment()Another is raw v. fitted
While augment gives you the person-level predictions, what it doesn’t do is give you nice smooth trajectories. This is because the persons have different levels of covariates. Thus, augment is not ideal for plotting predictions unless (1) there are no covariates or (2) all covariates are mean-centered.
predict() or fitted() functions# A tibble: 100 × 5
p_value age fit lwr upr
<dbl> <dbl> <dbl> <dbl> <dbl>
1 0 9.42 5.65 2.52 8.79
2 0.101 9.42 5.67 2.53 8.80
3 0.202 9.42 5.68 2.55 8.81
4 0.303 9.42 5.69 2.56 8.82
5 0.404 9.42 5.71 2.57 8.84
6 0.505 9.42 5.72 2.59 8.85
7 0.606 9.42 5.73 2.60 8.86
8 0.707 9.42 5.75 2.62 8.87
9 0.808 9.42 5.76 2.63 8.89
10 0.909 9.42 5.77 2.64 8.90
# ℹ 90 more rows
crossing(
p_value = seq(0, 10, .1)
, age = mean(d1$age)
) %>%
bind_cols(
.
, predict(m1, newdata = ., interval = "prediction")
) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
theme_classic()crossing(
p_value = seq(0, 10, .1)
, age = mean(d1$age)
) %>%
bind_cols(
.
, predict(m1, newdata = ., interval = "confidence")
) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
theme_classic()crossing(
p_value = seq(0, 10, .1)
, age = mean(d1$age)
) %>%
bind_cols(
.
, predict(m1, newdata = ., interval = "prediction")
) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
scale_x_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
scale_y_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
theme_classic()crossing(
p_value = seq(0, 10, .1)
, age = mean(d1$age)
) %>%
bind_cols(., predict(m1, newdata = ., interval = "prediction")) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_point(
data = d1
, aes(x = p_value, y = SRhealth)
, alpha = .4
, color = "seagreen4"
) +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
scale_x_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
scale_y_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
theme_classic()crossing(
p_value = seq(0, 10, .1)
, age = mean(d1$age)
) %>%
bind_cols(., predict(m1, newdata = ., interval = "prediction")) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_point(data = d1, aes(x = p_value, y = SRhealth)
, alpha = .4, color = "seagreen4") +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
scale_x_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
scale_y_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Predicted Self-Rated Health (POMP; 0-10)"
, title = "Conscientiousness and Self-Rated Health\nWere Weakly Associated"
) +
theme_classic() +
theme(
axis.text = element_text(face = "bold", size = rel(1.1))
, axis.title = element_text(face = "bold", size = rel(1.1))
, plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5)
)# A tibble: 6 × 6
study data m tidy glance pred
<chr> <list> <list> <list> <list> <list>
1 Study1 <tibble [831 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
2 Study2 <tibble [996 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
3 Study3 <tibble [1,000 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
4 Study4 <tibble [574 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
5 Study5 <tibble [616 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
6 Study6 <tibble [1,000 × 13]> <lm> <tibble [3 × 7]> <tibble> <tibble>
# A tibble: 600 × 6
study p_value age fit lwr upr
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Study1 0 9.42 5.65 2.52 8.79
2 Study1 0.101 9.42 5.67 2.53 8.80
3 Study1 0.202 9.42 5.68 2.55 8.81
4 Study1 0.303 9.42 5.69 2.56 8.82
5 Study1 0.404 9.42 5.71 2.57 8.84
6 Study1 0.505 9.42 5.72 2.59 8.85
7 Study1 0.606 9.42 5.73 2.60 8.86
8 Study1 0.707 9.42 5.75 2.62 8.87
9 Study1 0.808 9.42 5.76 2.63 8.89
10 Study1 0.909 9.42 5.77 2.64 8.90
# ℹ 590 more rows
Very close, but our intervals are cut off
nested_lm %>%
select(study, pred) %>%
unnest(pred) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_point(data = d1, aes(x = p_value, y = SRhealth)
, alpha = .2, color = "seagreen4") +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
scale_x_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
scale_y_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Predicted Self-Rated Health (POMP; 0-10)"
, title = "Conscientiousness and Self-Rated Health\nWere Weakly Associated In Most Samples"
) +
facet_wrap(~study, ncol = 2) +
theme_classic() +
theme(
axis.text = element_text(face = "bold", size = rel(1.1))
, axis.title = element_text(face = "bold", size = rel(1.1))
, plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5)
, strip.background = element_rect(fill = "darkseagreen4")
, strip.text = element_text(face = "bold", color = "white")
)nested_lm %>%
select(study, pred) %>%
unnest(pred) %>%
mutate(upr = ifelse(upr > 10, 10, upr)
, lwr = ifelse(lwr < 0, 0, lwr)) %>%
ggplot(aes(x = p_value, y = fit)) +
geom_point(data = d1, aes(x = p_value, y = SRhealth)
, alpha = .2, color = "seagreen4") +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "seagreen4", alpha = .2) +
geom_line(color = "seagreen4", size = 2) +
scale_x_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
scale_y_continuous(limits = c(0,10.2), breaks = seq(0,10,2)) +
labs(
x = "Conscientiousness (POMP; 0-10)"
, y = "Predicted Self-Rated Health (POMP; 0-10)"
, title = "Conscientiousness and Self-Rated Health\nWere Weakly Associated In Most Samples"
) +
facet_wrap(~study, ncol = 2) +
theme_classic() +
theme(
axis.text = element_text(face = "bold", size = rel(1.1))
, axis.title = element_text(face = "bold", size = rel(1.1))
, plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5)
, strip.background = element_rect(fill = "darkseagreen4")
, strip.text = element_text(face = "bold", color = "white")
)sjplotmarginaleffectsPSC 290 - Data Visualization