Chapter 6 Summarizing Models

Now that all the models have been run, the next step is to take various metrics and results from the models and format them into tables and figures that are more understable than thousands of model objects.

6.1 Question 1: Can we predict procrastination and loneliness?

6.1.1 Performance Metrics

To begin, we’ll pull the performance metrics – classification accuracy and area under the receiver operating curve (AUC) – to determine and display:

  1. Overall Model Performance
  2. Participant Specific Model Performance (e.g., did certain feature sets perform differently)
  3. Participants best models (in terms of accuracy and AUC) along with summaries of such accuracy and AUC, the feature set, etc.

The first thing we need to do is load in the final model performance metrics – that is, the accuracy and AUC of the model chosen via rolling-origin validation on the test / holdout set.

loadRData <- function(fileName, type, model){
#loads an RData file, and returns it
    path <- sprintf("%s/05-results/%s/06-final-model-performance/%s", local_path, model, fileName)
    load(path)
    get(ls()[grepl(type, ls())])
}

sum_res <- tibble(
  model = c("01-glmnet", "02-biscwit", "03-rf")
) %>%
  mutate(file = map(model, ~sprintf("%s/05-results/%s/06-final-model-performance", local_path, .) %>%
                      list.files())) %>%
  unnest(file) %>%
  mutate(data = map2(file, model, ~loadRData(.x, "final_metrics", .y))) %>%
  separate(file, c("SID", "outcome", "group", "set", "time"), sep = "_") %>%
  mutate(time = str_remove_all(time, ".RData")
         , model = str_remove_all(model, "[0-9 -]"))
save(sum_res, file = sprintf("%s/05-results/final-model-performance.RData", local_path))

Which looks something like this:

load(url(sprintf("%s/05-results/final-model-performance.RData", res_path)))
sum_res %>%
  unnest(data)
## # A tibble: 42,810 × 10
##    model  SID   outcome  group         set    time    .metric  .estimator .estimate .config             
##    <chr>  <chr> <chr>    <chr>         <chr>  <chr>   <chr>    <chr>          <dbl> <chr>               
##  1 glmnet 01    argument full          all    no time accuracy binary         0.909 Preprocessor1_Model1
##  2 glmnet 01    argument full          all    no time roc_auc  binary         0.6   Preprocessor1_Model1
##  3 glmnet 01    argument psychological Affect no time accuracy binary         0.909 Preprocessor1_Model1
##  4 glmnet 01    argument psychological Affect no time roc_auc  binary         0.5   Preprocessor1_Model1
##  5 glmnet 01    argument psychological all    no time accuracy binary         0.909 Preprocessor1_Model1
##  6 glmnet 01    argument psychological all    no time roc_auc  binary         0.5   Preprocessor1_Model1
##  7 glmnet 01    argument psychological BFI-2  no time accuracy binary         0.917 Preprocessor1_Model1
##  8 glmnet 01    argument psychological BFI-2  no time roc_auc  binary         0.818 Preprocessor1_Model1
##  9 glmnet 01    argument situations    all    no time accuracy binary         0.909 Preprocessor1_Model1
## 10 glmnet 01    argument situations    all    no time roc_auc  binary         0     Preprocessor1_Model1
## # … with 42,800 more rows
loadRData <- function(fileName){
#loads an RData file, and returns it
    path <- sprintf("%s/04-data/02-model-data/%s", local_path, fileName)
    load(path)
    # get(ls()[grepl(type, ls())])
    nrow(d)
}

n <- tibble(
  file = sprintf("%s/04-data/02-model-data", local_path) %>% list.files()
) %>%
  separate(file, c("SID", "outcome", "group", "set", "time"), sep = "_", remove = F)  %>%
  mutate(n = map_dbl(file, loadRData), 
         time = str_remove_all(time, ".RData"))
loadRData <- function(fileName, type, model){
#loads an RData file, and returns it
    path <- sprintf("%s/05-results/%s/07-final-model-param/%s", local_path, model, fileName)
    load(path)
    get(ls()[grepl(type, ls())])
}

param_res <- tibble(
  model = c("01-glmnet", "02-biscwit", "03-rf")
) %>%
  mutate(file = map(model, ~sprintf("%s/05-results/%s/07-final-model-param", local_path, .) %>%
                      list.files())) %>%
  unnest(file) %>%
  mutate(params = map2(file, model, ~loadRData(.x, "best", .y))
         , coefs = map2(file, model, ~loadRData(.x, "coef", .y))) %>%
  separate(file, c("SID", "outcome", "group", "set", "time"), sep = "_") %>%
  mutate(time = str_remove_all(time, ".RData")
         , model = str_remove_all(model, "[0-9 -]")) 
save(param_res, file = sprintf("%s/05-results/final-model-param.RData", local_path))

Which looks like this:

load(url(sprintf("%s/05-results/final-model-param.RData", res_path)))
param_res
## # A tibble: 21,159 × 8
##    model  SID   outcome    group         set    time    params           coefs     
##    <chr>  <chr> <chr>      <chr>         <chr>  <chr>   <list>           <list>    
##  1 glmnet 01    argument   full          all    no time <tibble [1 × 4]> <dbl [40]>
##  2 glmnet 01    argument   psychological Affect no time <tibble [1 × 4]> <dbl [10]>
##  3 glmnet 01    argument   psychological all    no time <tibble [1 × 4]> <dbl [25]>
##  4 glmnet 01    argument   psychological BFI-2  no time <tibble [1 × 4]> <dbl [15]>
##  5 glmnet 01    argument   situations    all    no time <tibble [1 × 4]> <dbl [15]>
##  6 glmnet 01    argument   situations    S8-I   no time <tibble [1 × 4]> <dbl [8]> 
##  7 glmnet 01    argument   situations    sit    no time <tibble [1 × 4]> <dbl [7]> 
##  8 glmnet 01    interacted full          all    no time <tibble [1 × 4]> <dbl [39]>
##  9 glmnet 01    interacted psychological Affect no time <tibble [1 × 4]> <dbl [10]>
## 10 glmnet 01    interacted psychological all    no time <tibble [1 × 4]> <dbl [25]>
## # … with 21,149 more rows

6.1.2 Classification Accuracy and AUC for all Models

Now that we’ve loaded in the results, the first thing that we’ll do is create tables on the performance of each model for all the tested feature sets. The goal here is less to make any specific argument with the results and more to just document them in a nice table format that is easier to read.

perf_tab_fun <- function(d, outcome, group, set, time){
  # format groups, time, and outcomes to nice names
  g <- str_to_title(group); s <- str_to_title(set)
  tm <- if(time == "time") "With Time" else "Without Time"
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  # create the caption
  cap <- sprintf("<strong>Table SX</strong><br><em>Performance Metrics of the %s (%s) Feature Set %s Predicting %s", g, s, tm, o)
  # call kable to create the html table
  tab <- d %>%
    kable(.
          , "html"
          , col.names = c("ID", rep(c("Accuracy", "AUC"), times = 3))
          , align = c("r", rep("c", 6))
          , digits = 2
          , caption = cap
    ) %>%
    kable_styling(full_width = F) %>%
    add_header_above(c(" " = 1, "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2))
  # save the table to files
  save_kable(tab, file = sprintf("%s/05-results/04-tables/01-participant-metrics/%s_%s_%s_%s.html", local_path, outcome, group, set, time))
  # return the table object
  return(tab)
}

sum_res_tab <- sum_res %>%
  unnest(data) %>%
  select(-.estimator, -.config) %>%
  pivot_wider(names_from = c("model", ".metric")
              , values_from = ".estimate") %>%
  group_by(outcome, group, set, time) %>%
  nest() %>%
  ungroup() %>%
  mutate(tab = pmap(list(data, outcome, group, set, time), perf_tab_fun))
sum_res_tab
## # A tibble: 98 × 6
##    outcome    group         set    time    data               tab           
##    <chr>      <chr>         <chr>  <chr>   <list>             <list>        
##  1 argument   full          all    no time <tibble [33 × 7]>  <kablExtr [1]>
##  2 argument   psychological Affect no time <tibble [35 × 7]>  <kablExtr [1]>
##  3 argument   psychological all    no time <tibble [35 × 7]>  <kablExtr [1]>
##  4 argument   psychological BFI-2  no time <tibble [41 × 7]>  <kablExtr [1]>
##  5 argument   situations    all    no time <tibble [33 × 7]>  <kablExtr [1]>
##  6 argument   situations    S8-I   no time <tibble [33 × 7]>  <kablExtr [1]>
##  7 argument   situations    sit    no time <tibble [41 × 7]>  <kablExtr [1]>
##  8 interacted full          all    no time <tibble [102 × 7]> <kablExtr [1]>
##  9 interacted psychological Affect no time <tibble [111 × 7]> <kablExtr [1]>
## 10 interacted psychological all    no time <tibble [111 × 7]> <kablExtr [1]>
## # … with 88 more rows

Now I’ll print the tables in different tabs below. Here, I’m only showing the set with combined features for each category for parsimony. The full results are in the online materials under 05-results/04-tables/01-participant-metrics.

As is clear in each of these tables, overall accuracy and AUC are quite high although there are quite stark individual differences in them across people. AUC tended to be lower than accuracy on average. However, at the individual level, there are some individuals who had AUC scores higher than accuracy.

tmp <- sum_res_tab %>% 
  filter(set == "all" & group == "full" & time == "no time") %>%
  mutate(group = sprintf("%s, %s", str_to_title(group), str_to_title(time)),
         out = mapvalues(outcome, outcomes$trait, outcomes$long_name))

for(i in 1:nrow(tmp)){
  cat('  \n\n#### ', tmp$out[i], '\n\n  ', sep ="")
  tmp$tab[[i]] %>%
    scroll_box(height = "500px") %>%
    print()
  cat("\n")
}

6.1.2.1 Argument

6.1.2.2 Interacted

6.1.2.3 Procrastinating

6.1.2.4 Studying

6.1.2.5 Tired

6.1.2.6 Sick

6.1.2.7 Lonely

6.1.3 Best Models

Next, to get a more concise indication of how these models are performing, we will choose the best model in terms of accuracy and AUC for each participant, outcome, and model combination.

best_mods <- sum_res %>% 
  unnest(data) %>%
  filter(set == "all") %>%
  group_by(SID, outcome, .metric, model) %>%
  filter(!is.na(.estimate) & .estimate != 1) %>%
  arrange(desc(.estimate), model, group) %>%
  slice_head(n = 1) %>%
  ungroup(); best_mods
## # A tibble: 3,274 × 10
##    model   SID   outcome    group         set   time    .metric  .estimator .estimate .config             
##    <chr>   <chr> <chr>      <chr>         <chr> <chr>   <chr>    <chr>          <dbl> <chr>               
##  1 biscwit 01    argument   full          all   no time accuracy binary         0.909 <NA>                
##  2 glmnet  01    argument   full          all   no time accuracy binary         0.909 Preprocessor1_Model1
##  3 rf      01    argument   psychological all   no time accuracy binary         0.909 Preprocessor1_Model1
##  4 biscwit 01    argument   situations    all   no time roc_auc  binary         0.7   <NA>                
##  5 glmnet  01    argument   full          all   no time roc_auc  binary         0.6   Preprocessor1_Model1
##  6 rf      01    argument   full          all   no time roc_auc  binary         0.5   Preprocessor1_Model1
##  7 biscwit 01    interacted psychological all   no time accuracy binary         0.818 <NA>                
##  8 glmnet  01    interacted full          all   no time accuracy binary         0.727 Preprocessor1_Model1
##  9 rf      01    interacted psychological all   no time accuracy binary         0.818 Preprocessor1_Model1
## 10 biscwit 01    interacted situations    all   no time roc_auc  binary         0.625 <NA>                
## # … with 3,264 more rows

6.1.3.1 Participant Summaries (Table)

Now that we have participants best models, the first thing we’ll do is create a summary of just how well participants’ best models actually performed. These Supplementary Tables will be split by outcome (procrastination, loneliness) and metric (accuracy, AUC) with each row giving details on which feature set was chosen for each method and what the accuracy or AUC for that method was.

px_bm_fun <- function(d, outcome, metric){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  m <- if(metric == "accuracy") "Accuracy" else "AUC"
  cap <- sprintf("<strong>Table SX</strong><br><em>Feature Set and %s for Predicting %s for Each Participant's Best Model</em>", m, o)
  tab <- d %>%
    select(SID, contains("glmnet"), contains("biscwit"), contains("rf")) %>%
    kable(.
          , "html"
          , digits = 2
          , col.names = c("ID", rep(c("Feature Set", m), times = 3))
          , align = c("r", rep(c("l", "c"), times = 3))
          , cap = cap
          ) %>%
      kable_styling(full_width = F) %>%
      add_header_above(c(" " = 1, "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2))
  save_kable(tab, file = sprintf("%s/05-results/04-tables/02-participant-best-models/%s_%s.html", local_path, outcome, metric))
  return(tab)
}

px_best_mods <- best_mods %>% 
  select(-.estimator, -.config, -set) %>%
  mutate_at(vars(group, time), str_to_title) %>%
  unite(group, group, time, sep = ", ") %>%
  pivot_wider(names_from = "model"
              , values_from = c("group", ".estimate")
              , names_glue = "{model}_{.value}") %>%
  group_by(outcome, .metric) %>%
  nest() %>%
  ungroup() %>%
  mutate(tab = pmap(list(data, outcome, .metric), px_bm_fun)); px_best_mods
## # A tibble: 14 × 4
##    outcome    .metric  data               tab           
##    <chr>      <chr>    <list>             <list>        
##  1 argument   accuracy <tibble [35 × 7]>  <kablExtr [1]>
##  2 argument   roc_auc  <tibble [35 × 7]>  <kablExtr [1]>
##  3 interacted accuracy <tibble [111 × 7]> <kablExtr [1]>
##  4 interacted roc_auc  <tibble [111 × 7]> <kablExtr [1]>
##  5 prcrst     accuracy <tibble [87 × 7]>  <kablExtr [1]>
##  6 prcrst     roc_auc  <tibble [87 × 7]>  <kablExtr [1]>
##  7 study      accuracy <tibble [110 × 7]> <kablExtr [1]>
##  8 study      roc_auc  <tibble [110 × 7]> <kablExtr [1]>
##  9 tired      accuracy <tibble [98 × 7]>  <kablExtr [1]>
## 10 tired      roc_auc  <tibble [98 × 7]>  <kablExtr [1]>
## 11 sick       accuracy <tibble [56 × 7]>  <kablExtr [1]>
## 12 sick       roc_auc  <tibble [56 × 7]>  <kablExtr [1]>
## 13 lonely     accuracy <tibble [52 × 7]>  <kablExtr [1]>
## 14 lonely     roc_auc  <tibble [52 × 7]>  <kablExtr [1]>

Now, let’s print each of these tables and see what they demonstrate. Across people, accuracy was, on average (and median), pretty high. Accuracy estimates across models tended to be very similar for each person, which indicates that the models seemed to perform similarly.

tmp <- px_best_mods %>% 
  filter(.metric == "accuracy") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.1.3.1.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Lonely for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
03 Psychological, No Time 0.90 Psychological, No Time 0.90 Psychological, No Time 0.90
08 Situations, No Time 0.83 Situations, No Time 0.92 Situations, No Time 0.91
10 Psychological, No Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.89
103 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
105 Full, No Time 0.85 Full, Time 0.92 Full, No Time 0.83
106 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
108 Psychological, No Time 0.80 Full, No Time 0.75 Full, No Time 0.81
112 Full, No Time 0.69 Full, No Time 0.69 Full, No Time 0.75
118 Psychological, No Time 0.73 Psychological, No Time 0.73 Psychological, No Time 0.75
119 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
123 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
129 Full, No Time 0.58 Full, No Time 0.58 Full, No Time 0.64
133 Full, No Time 0.90 Full, No Time 0.90 Full, No Time 0.90
135 Full, Time 0.93 Full, Time 0.93 Situations, No Time 0.93
146 Full, No Time 0.94 Full, No Time 0.94 Full, No Time 0.94
149 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
150 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
152 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
154 Full, No Time 0.94 Full, No Time 0.94 Psychological, No Time 0.94
155 Full, No Time 0.83 Situations, No Time 0.67 Full, No Time 0.71
157 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
158 Full, Time 0.93 Psychological, No Time 0.93 Full, No Time 0.93
160 Full, No Time 0.83 Full, No Time 0.83 Full, No Time 0.83
164 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
168 Full, No Time 0.69 Psychological, Time 0.77 Psychological, Time 0.75
170 Psychological, No Time 0.95 Psychological, No Time 0.95 Psychological, No Time 0.94
18 Psychological, No Time 0.95 Full, Time 0.95 Situations, No Time 0.94
185 Situations, Time 0.68 Situations, No Time 0.65 Situations, No Time 0.65
186 Full, Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
196 Full, No Time 0.92 Full, Time 0.92 Situations, No Time 0.92
20 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
201 Full, No Time 0.82 Full, No Time 0.82 Full, No Time 0.80
206 Full, Time 0.89 Full, No Time 0.89 Situations, No Time 0.88
207 Full, Time 0.92 Psychological, Time 0.92 Full, No Time 0.92
211 Full, No Time 0.81 Situations, No Time 0.81 Full, No Time 0.83
212 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
214 Full, No Time 0.75 Full, No Time 0.75 Situations, No Time 0.80
220 Full, No Time 0.92 Full, No Time 0.92 Full, Time 0.91
25 Full, No Time 0.75 Psychological, No Time 0.83 Full, No Time 0.70
27 Full, No Time 0.83 Full, No Time 0.83 Full, Time 0.90
32 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
35 Psychological, No Time 0.83 Full, No Time 0.75 Full, No Time 0.91
36 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.91
43 Full, No Time 0.82 Full, No Time 0.73 Full, No Time 0.80
51 Psychological, No Time 0.75 Psychological, Time 0.92 Full, No Time 0.80
53 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
58 Psychological, No Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.90
63 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
66 Full, Time 0.91 Situations, No Time 0.91
67 Full, No Time 0.86 Full, No Time 0.86
73 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
84 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
6.1.3.1.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Procrastinating for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
01 Full, No Time 0.91 Full, No Time 0.91 Psychological, No Time 0.91
02 Full, No Time 0.85 Situations, No Time 0.85 Full, No Time 0.83
03 Psychological, No Time 0.90 Psychological, No Time 0.60 Psychological, No Time 0.90
05 Psychological, No Time 0.92 Psychological, No Time 0.92 Full, No Time 0.92
09 Psychological, No Time 0.91 Psychological, No Time 0.91
10 Psychological, No Time 0.73 Psychological, No Time 0.73 Psychological, No Time 0.67
103 Psychological, Time 0.69 Psychological, No Time 0.56 Situations, No Time 0.62
105 Full, No Time 0.92 Full, No Time 0.92 Psychological, No Time 0.93
106 Situations, No Time 0.75 Psychological, Time 0.81 Full, No Time 0.87
107 Full, Time 0.93 Full, Time 0.93 Situations, No Time 0.93
108 Full, No Time 0.55 Psychological, No Time 0.75 Situations, No Time 0.58
110 Full, No Time 0.92 Full, No Time 0.83 Situations, No Time 0.92
111 Full, Time 0.90 Full, Time 0.80 Situations, No Time 0.90
112 Psychological, Time 0.69 Full, Time 0.69 Situations, No Time 0.69
118 Psychological, No Time 0.64 Psychological, Time 0.60 Psychological, No Time 0.62
119 Psychological, Time 0.64 Psychological, Time 0.64 Full, No Time 0.57
123 Full, Time 0.80 Psychological, No Time 0.80 Full, No Time 0.79
124 Full, No Time 0.73 Situations, No Time 0.82 Full, No Time 0.50
126 Full, No Time 0.50 Situations, No Time 0.83 Full, No Time 0.64
129 Full, No Time 0.83 Full, Time 0.83 Situations, No Time 0.58
135 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
146 Situations, No Time 0.59 Situations, Time 0.60 Psychological, No Time 0.58
148 Psychological, No Time 0.67 Full, No Time 0.67 Situations, No Time 0.55
149 Situations, No Time 0.63 Situations, Time 0.67 Full, No Time 0.75
150 Full, No Time 0.72 Situations, No Time 0.68 Situations, No Time 0.79
152 Full, No Time 0.88 Full, No Time 0.88 Situations, No Time 0.88
155 Full, No Time 0.56 Situations, No Time 0.67 Full, No Time 0.53
156 Psychological, Time 0.52 Psychological, Time 0.57 Situations, Time 0.55
157 Situations, Time 0.95 Full, Time 0.95 Full, No Time 0.95
158 Full, Time 0.73 Situations, No Time 0.73 Full, No Time 0.67
159 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
160 Full, No Time 0.89 Full, No Time 0.89 Full, No Time 0.89
162 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
164 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
165 Full, No Time 0.73 Psychological, Time 0.82 Full, No Time 0.56
166 Full, Time 0.58 Situations, Time 0.67 Full, Time 0.90
167 Situations, No Time 0.64 Psychological, No Time 0.64 Full, No Time 0.70
168 Full, Time 0.69 Full, No Time 0.77 Full, Time 0.67
169 Psychological, No Time 0.94 Psychological, No Time 0.94 Psychological, No Time 0.93
17 Full, Time 0.46 Psychological, Time 0.62 Psychological, Time 0.33
170 Full, No Time 0.85 Situations, Time 0.92 Situations, No Time 0.85
171 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
174 Full, Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
185 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
186 Psychological, Time 0.80 Situations, No Time 0.87 Situations, Time 0.79
188 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.92
189 Full, No Time 0.83 Psychological, No Time 0.83 Situations, No Time 0.82
190 Psychological, No Time 0.93 Situations, No Time 0.86 Psychological, No Time 0.93
192 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.92
195 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
196 Full, No Time 0.83 Situations, No Time 0.92 Situations, No Time 0.83
20 Full, No Time 0.79 Full, Time 0.86 Situations, No Time 0.79
206 Full, Time 0.89 Full, No Time 0.89 Full, No Time 0.94
207 Psychological, No Time 0.86 Full, No Time 0.86 Full, No Time 0.85
21 Full, No Time 0.60 Full, No Time 0.53 Psychological, No Time 0.64
211 Full, No Time 0.96 Full, No Time 0.96 Situations, Time 0.96
212 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
214 Full, Time 0.94 Psychological, Time 0.94 Situations, No Time 0.93
216 Psychological, No Time 0.81 Full, No Time 0.81 Full, No Time 0.83
22 Full, Time 0.75 Full, Time 0.83 Situations, Time 0.73
220 Psychological, No Time 0.92 Full, No Time 0.83 Full, No Time 0.91
25 Full, No Time 0.75 Full, No Time 0.83 Psychological, No Time 0.70
26 Full, No Time 0.81 Full, No Time 0.81 Full, No Time 0.87
27 Situations, No Time 0.83 Full, Time 0.55 Full, Time 0.90
30 Full, Time 0.92 Full, No Time 0.86 Full, Time 0.92
31 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
32 Full, No Time 0.86 Psychological, No Time 0.86 Full, No Time 0.92
33 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.91
35 Full, No Time 0.83 Psychological, No Time 0.83 Full, No Time 0.91
38 Psychological, No Time 0.67 Situations, No Time 0.64 Psychological, No Time 0.69
40 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
43 Full, No Time 0.91 Situations, No Time 0.73 Full, No Time 0.90
49 Psychological, Time 0.73 Psychological, No Time 0.64 Psychological, No Time 0.50
51 Psychological, No Time 0.92 Psychological, No Time 0.92 Psychological, No Time 0.91
53 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
61 Psychological, No Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.91
63 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
66 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.91
67 Full, No Time 0.71 Full, Time 0.79 Full, No Time 0.69
71 Psychological, No Time 0.73 Full, No Time 0.73 Full, No Time 0.60
73 Full, No Time 0.86 Situations, No Time 0.93 Full, No Time 0.85
74 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.92
77 Full, No Time 0.90 Psychological, No Time 0.80 Situations, No Time 0.90
78 Full, No Time 0.91 Psychological, No Time 0.91 Full, No Time 0.90
84 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
85 Full, No Time 0.85 Full, No Time 0.85 Full, No Time 0.83
86 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
6.1.3.1.3 Studying
(tmp %>% filter(outcome == "study"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Studying for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
01 Full, No Time 0.91 Full, No Time 0.91 Psychological, No Time 0.91
02 Situations, No Time 0.69 Full, Time 0.67 Situations, Time 0.83
03 Psychological, No Time 0.80 Psychological, No Time 0.80 Psychological, No Time 0.80
05 Full, Time 0.83 Full, No Time 0.67 Situations, No Time 0.75
08 Full, Time 0.67 Full, No Time 0.67 Full, No Time 0.73
09 Psychological, No Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.90
10 Psychological, No Time 0.73 Psychological, Time 0.73 Psychological, No Time 0.78
103 Psychological, Time 0.56 Psychological, Time 0.56 Situations, Time 0.50
105 Full, Time 0.92 Full, No Time 0.85 Psychological, Time 0.93
106 Situations, Time 0.69 Situations, No Time 0.62 Full, Time 0.67
107 Full, Time 0.53 Full, No Time 0.53 Full, No Time 0.54
108 Psychological, Time 0.65 Psychological, Time 0.70 Full, No Time 0.56
110 Full, Time 0.83 Psychological, Time 0.83 Full, Time 0.89
111 Situations, Time 0.70 Situations, Time 0.80 Full, Time 0.67
112 Psychological, No Time 0.77 Psychological, No Time 0.77 Situations, No Time 0.77
113 Full, No Time 0.90 Situations, No Time 0.90 Full, No Time 0.90
118 Psychological, No Time 0.82 Psychological, No Time 0.82 Psychological, No Time 0.75
119 Full, No Time 0.64 Psychological, No Time 0.57 Full, No Time 0.64
123 Psychological, No Time 0.67 Situations, No Time 0.80 Full, No Time 0.71
124 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.90
126 Full, Time 0.75 Situations, Time 0.92 Situations, No Time 0.64
129 Full, Time 0.58 Full, No Time 0.58 Full, Time 0.73
132 Psychological, Time 0.73 Full, No Time 0.45 Situations, No Time 0.27
133 Full, No Time 0.40 Situations, No Time 0.40 Full, No Time 0.40
135 Psychological, No Time 0.50 Full, No Time 0.71 Full, No Time 0.62
14 Full, No Time 0.83 Psychological, No Time 0.83 Situations, No Time 0.83
146 Psychological, No Time 0.89 Full, No Time 0.82 Psychological, No Time 0.89
148 Full, No Time 0.92 Psychological, No Time 0.92 Situations, No Time 0.91
149 Full, No Time 0.84 Full, No Time 0.84 Full, No Time 0.94
150 Full, No Time 0.60 Full, No Time 0.64 Full, No Time 0.59
152 Full, No Time 0.88 Situations, No Time 0.92 Situations, No Time 0.88
154 Full, No Time 0.88 Psychological, No Time 0.82 Situations, Time 0.88
155 Full, No Time 0.94 Psychological, No Time 0.83 Situations, No Time 0.94
156 Situations, No Time 0.81 Psychological, No Time 0.62 Situations, Time 0.70
157 Full, No Time 0.62 Situations, Time 0.70 Situations, No Time 0.62
158 Full, Time 0.87 Situations, Time 0.87 Full, Time 0.86
159 Full, No Time 0.70 Situations, No Time 0.70 Situations, No Time 0.70
160 Full, No Time 0.72 Psychological, No Time 0.72 Full, Time 0.76
162 Full, Time 0.62 Psychological, No Time 0.43 Full, No Time 0.73
164 Full, No Time 0.96 Full, No Time 0.83 Situations, No Time 0.96
165 Situations, No Time 0.64 Situations, No Time 0.64 Situations, No Time 0.70
166 Full, No Time 0.67 Situations, No Time 0.75 Full, No Time 0.90
167 Full, No Time 0.55 Situations, Time 0.64 Full, No Time 0.50
168 Full, No Time 0.85 Full, No Time 0.77 Full, No Time 0.85
169 Psychological, No Time 0.88 Psychological, No Time 0.88
17 Full, No Time 0.93 Full, No Time 0.86 Full, No Time 0.92
170 Full, No Time 0.85 Situations, No Time 0.85 Psychological, No Time 0.82
171 Full, Time 0.54 Full, No Time 0.52 Full, Time 0.64
174 Psychological, No Time 0.68 Situations, Time 0.80 Situations, Time 0.75
18 Psychological, No Time 0.84 Full, No Time 0.84 Situations, No Time 0.89
180 Full, No Time 0.64 Full, No Time 0.73 Full, No Time 0.70
181 Full, No Time 0.91 Psychological, No Time 0.91 Situations, No Time 0.90
184 Situations, Time 0.75 Full, No Time 0.69 Situations, No Time 0.67
185 Full, No Time 0.45 Full, No Time 0.55 Situations, Time 0.50
186 Full, Time 0.60 Full, No Time 0.60 Situations, No Time 0.57
187 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
188 Full, No Time 0.92 Full, Time 0.83 Full, No Time 0.92
189 Full, No Time 0.67 Full, No Time 0.83 Situations, No Time 0.73
190 Situations, No Time 0.50 Situations, No Time 0.64 Psychological, No Time 0.47
192 Situations, Time 0.62 Situations, Time 0.62 Full, No Time 0.54
195 Psychological, No Time 0.71 Psychological, No Time 0.65 Full, No Time 0.79
196 Full, Time 0.50 Full, Time 0.50 Situations, Time 0.50
20 Full, Time 0.71 Psychological, No Time 0.57 Situations, Time 0.62
201 Full, No Time 0.55 Full, No Time 0.45 Situations, No Time 0.45
206 Full, Time 0.56 Psychological, Time 0.56 Situations, No Time 0.53
207 Full, No Time 0.79 Full, No Time 0.79 Full, No Time 0.77
209 Psychological, No Time 0.93 Psychological, No Time 0.93 Psychological, No Time 0.92
21 Full, No Time 0.93 Psychological, Time 0.87 Full, No Time 0.93
211 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
212 Psychological, No Time 0.95 Full, Time 0.80 Situations, No Time 0.95
214 Full, Time 0.94 Psychological, Time 0.94 Situations, No Time 0.93
216 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
22 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.92
220 Full, No Time 0.92 Psychological, No Time 0.92 Full, No Time 0.91
221 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
23 Situations, No Time 0.93 Psychological, No Time 0.93 Situations, No Time 0.85
25 Full, No Time 0.75 Psychological, No Time 0.67 Situations, No Time 0.75
26 Psychological, No Time 0.94 Full, No Time 0.88 Situations, No Time 0.94
27 Full, No Time 0.67 Full, No Time 0.67 Psychological, No Time 0.73
28 Full, No Time 0.93 Full, No Time 0.93 Full, Time 0.92
30 Full, No Time 0.79 Full, No Time 0.79 Full, No Time 0.77
31 Psychological, Time 0.64 Psychological, No Time 0.71 Situations, Time 0.77
32 Full, No Time 0.71 Full, No Time 0.79 Full, No Time 0.77
35 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.82
36 Full, No Time 0.92 Psychological, No Time 0.92 Full, No Time 0.91
38 Psychological, No Time 0.93 Situations, Time 0.82 Situations, No Time 0.93
39 Full, No Time 0.93 Full, No Time 0.71 Situations, No Time 0.92
40 Full, No Time 0.82 Psychological, Time 0.73 Psychological, No Time 0.73
43 Situations, No Time 0.64 Full, No Time 0.55 Full, No Time 0.50
49 Psychological, Time 0.73 Psychological, Time 0.73 Psychological, Time 0.50
51 Psychological, No Time 0.92 Full, No Time 0.91 Psychological, No Time 0.91
52 Full, Time 0.91 Full, No Time 0.73 Situations, No Time 0.91
53 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
58 Psychological, Time 0.82 Psychological, Time 0.82 Psychological, Time 0.80
61 Psychological, Time 0.73 Psychological, No Time 0.64 Psychological, No Time 0.73
63 Full, No Time 0.91 Situations, No Time 0.91 Full, No Time 0.91
66 Full, No Time 0.91 Situations, No Time 0.73 Full, No Time 0.88
67 Full, No Time 0.93 Full, Time 0.93 Full, No Time 0.92
71 Full, No Time 0.91 Psychological, Time 0.91 Full, No Time 0.90
72 Full, No Time 0.93 Full, No Time 0.86 Situations, No Time 0.92
73 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
74 Full, Time 0.93 Psychological, Time 0.93 Situations, No Time 0.92
77 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
78 Full, No Time 0.91 Psychological, No Time 0.91 Full, No Time 0.90
81 Psychological, Time 0.82 Psychological, No Time 0.83 Psychological, No Time 0.90
82 Psychological, Time 0.92 Full, Time 0.82 Psychological, Time 0.91
84 Full, No Time 0.85 Full, No Time 0.92 Situations, No Time 0.85
85 Full, No Time 0.85 Psychological, No Time 0.85 Full, No Time 0.83
86 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
87 Full, Time 0.55 Psychological, Time 0.55 Full, No Time 0.45
6.1.3.1.4 Argument
(tmp %>% filter(outcome == "argument"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Argument for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
01 Full, No Time 0.91 Full, No Time 0.91 Psychological, No Time 0.91
03 Psychological, No Time 0.80 Psychological, No Time 0.90 Psychological, No Time 0.90
103 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
106 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
107 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
108 Situations, No Time 0.90 Full, No Time 0.85 Situations, No Time 0.84
118 Psychological, Time 0.90 Psychological, No Time 0.91 Psychological, No Time 0.88
129 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
146 Psychological, No Time 0.95 Psychological, No Time 0.95 Psychological, No Time 0.95
148 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.91
149 Full, Time 0.78 Psychological, No Time 0.74 Full, No Time 0.75
157 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
158 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
159 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
17 Full, No Time 0.86 Full, No Time 0.86 Full, No Time 0.85
170 Psychological, No Time 0.95 Psychological, No Time 0.95 Psychological, No Time 0.94
185 Full, Time 0.89 Full, Time 0.89 Full, Time 0.89
188 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.92
190 Psychological, No Time 0.93 Psychological, No Time 0.93 Psychological, No Time 0.93
196 Full, No Time 0.83 Full, No Time 0.83 Situations, No Time 0.83
206 Full, Time 0.67 Full, No Time 0.67 Full, No Time 0.69
211 Psychological, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
212 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
22 Full, No Time 0.93 Psychological, No Time 0.93 Full, No Time 0.91
220 Full, No Time 0.75 Full, No Time 0.75 Full, No Time 0.82
25 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
38 Psychological, No Time 0.80 Psychological, No Time 0.80 Psychological, No Time 0.85
39 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.92
43 Full, No Time 0.73 Full, No Time 0.73 Full, No Time 0.70
53 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
66 Full, Time 0.91 Situations, No Time 0.91
67 Full, No Time 0.86 Full, No Time 0.86
73 Full, No Time 0.93 Psychological, No Time 0.93 Full, No Time 0.92
77 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
86 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
6.1.3.1.5 Tired
(tmp %>% filter(outcome == "tired"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Tired for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
01 Full, No Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.91
02 Situations, No Time 0.92 Full, Time 0.83 Situations, Time 0.75
03 Psychological, No Time 0.60 Psychological, No Time 0.70 Psychological, No Time 0.90
05 Psychological, No Time 0.92 Psychological, No Time 0.92 Full, No Time 0.92
08 Full, No Time 0.75 Full, No Time 0.83 Full, No Time 0.73
09 Psychological, Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.90
10 Psychological, Time 0.73 Psychological, No Time 0.73 Psychological, No Time 0.56
103 Full, No Time 0.69 Full, No Time 0.69 Full, No Time 0.64
105 Situations, No Time 0.62 Situations, No Time 0.69 Full, No Time 0.67
106 Situations, No Time 0.75 Full, Time 0.81 Situations, No Time 0.62
107 Full, No Time 0.80 Full, Time 0.80 Situations, No Time 0.80
108 Full, No Time 0.70 Full, No Time 0.70 Full, No Time 0.69
111 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
112 Full, No Time 0.77 Full, Time 0.92 Full, No Time 0.83
113 Full, No Time 0.90 Full, No Time 0.90 Full, No Time 0.90
118 Psychological, Time 0.80 Psychological, No Time 0.73 Psychological, Time 0.75
119 Psychological, No Time 0.50 Full, Time 0.50 Full, No Time 0.50
123 Full, Time 0.93 Psychological, No Time 0.87 Full, No Time 0.93
124 Full, Time 0.90 Situations, Time 0.90 Full, No Time 0.90
126 Full, No Time 0.83 Full, Time 0.92 Full, No Time 0.82
129 Full, No Time 0.67 Situations, Time 0.92 Situations, No Time 0.67
133 Full, No Time 0.90 Full, No Time 0.90 Full, No Time 0.90
135 Full, No Time 0.64 Situations, Time 0.71 Full, No Time 0.69
146 Full, No Time 0.76 Psychological, No Time 0.63 Psychological, Time 0.71
148 Situations, No Time 0.50 Situations, No Time 0.50 Full, No Time 0.60
149 Full, No Time 0.63 Psychological, No Time 0.58 Situations, No Time 0.53
150 Full, No Time 0.88 Psychological, Time 0.88 Situations, No Time 0.88
152 Full, No Time 0.72 Situations, Time 0.79 Situations, No Time 0.72
154 Full, No Time 0.88 Psychological, No Time 0.82 Situations, No Time 0.88
155 Full, No Time 0.72 Situations, No Time 0.67 Full, No Time 0.76
156 Full, No Time 0.86 Full, No Time 0.86 Full, No Time 0.90
157 Full, No Time 0.76 Situations, No Time 0.62 Situations, No Time 0.48
158 Situations, Time 0.73 Situations, Time 0.73 Situations, Time 0.71
159 Full, Time 0.79 Psychological, Time 0.79 Situations, Time 0.79
160 Full, No Time 0.50 Full, Time 0.44 Full, No Time 0.50
162 Full, No Time 0.86 Psychological, No Time 0.86 Full, No Time 0.91
164 Full, Time 0.78 Situations, Time 0.78 Full, Time 0.81
165 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.90
166 Full, No Time 0.75 Situations, No Time 0.83 Situations, No Time 0.82
167 Full, No Time 0.82 Full, Time 0.91 Situations, No Time 0.90
168 Full, No Time 0.85 Full, Time 0.85 Situations, No Time 0.85
169 Psychological, No Time 0.94 Psychological, No Time 0.94 Psychological, Time 0.93
17 Full, No Time 0.64 Full, Time 0.69 Full, No Time 0.62
170 Psychological, Time 0.78 Situations, No Time 0.77 Full, Time 0.75
171 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
174 Full, No Time 0.96 Full, No Time 0.96 Situations, Time 0.96
18 Full, No Time 0.58 Situations, No Time 0.63 Full, No Time 0.75
180 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.90
181 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.90
185 Full, No Time 0.80 Full, No Time 0.85 Situations, No Time 0.80
186 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
187 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
188 Full, No Time 0.67 Psychological, Time 0.67 Full, No Time 0.67
189 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.91
190 Full, No Time 0.71 Full, No Time 0.71 Full, No Time 0.69
192 Full, Time 0.69 Psychological, No Time 0.69 Full, Time 0.77
195 Full, No Time 0.53 Full, No Time 0.59 Full, No Time 0.64
196 Full, No Time 0.75 Full, No Time 0.67 Situations, No Time 0.75
20 Full, No Time 0.43 Situations, No Time 0.50 Situations, No Time 0.50
201 Full, No Time 0.82 Situations, No Time 0.82
206 Full, Time 0.78 Full, No Time 0.78 Situations, No Time 0.76
207 Full, Time 0.85 Psychological, Time 0.62 Full, No Time 0.85
21 Full, No Time 0.33 Full, No Time 0.53 Situations, Time 0.57
211 Full, No Time 0.70 Full, No Time 0.59 Situations, Time 0.92
212 Psychological, No Time 0.81 Psychological, No Time 0.81 Situations, No Time 0.80
214 Full, Time 0.88 Full, Time 0.88 Situations, No Time 0.87
216 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
22 Full, No Time 0.50 Psychological, Time 0.50 Situations, No Time 0.54
220 Psychological, Time 0.73 Full, Time 0.64 Full, Time 0.55
221 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
23 Full, No Time 0.43 Full, No Time 0.43 Psychological, No Time 0.50
25 Full, No Time 0.17 Situations, No Time 0.50 Full, No Time 0.50
26 Full, No Time 0.94 Psychological, No Time 0.94 Situations, No Time 0.94
27 Situations, Time 0.64 Situations, Time 0.64 Situations, Time 0.80
30 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
31 Psychological, No Time 0.79 Psychological, No Time 0.79 Full, No Time 0.77
32 Full, Time 0.79 Psychological, Time 0.64 Situations, No Time 0.57
35 Situations, No Time 0.75 Situations, No Time 0.58 Situations, No Time 0.64
36 Full, No Time 0.92 Situations, No Time 0.92 Situations, Time 0.91
38 Psychological, No Time 0.87 Psychological, Time 0.82 Full, Time 0.89
40 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
43 Full, No Time 0.91 Psychological, No Time 0.91 Full, No Time 0.90
49 Psychological, Time 0.55 Psychological, No Time 0.45 Psychological, No Time 0.60
51 Psychological, No Time 0.83 Psychological, No Time 0.83 Psychological, No Time 0.82
52 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.91
53 Full, No Time 0.87 Full, No Time 0.87 Full, No Time 0.93
58 Psychological, No Time 0.91 Psychological, No Time 0.82 Psychological, No Time 0.80
63 Full, No Time 0.91 Psychological, No Time 0.73 Full, No Time 0.91
67 Full, No Time 0.93 Full, Time 0.93 Full, No Time 0.92
71 Full, Time 0.64 Psychological, No Time 0.64 Full, No Time 0.70
72 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.92
73 Full, No Time 0.86 Full, No Time 0.93 Full, No Time 0.85
74 Full, Time 0.93 Full, No Time 0.93 Situations, No Time 0.92
77 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
81 Psychological, No Time 0.92 Psychological, Time 0.91 Psychological, No Time 0.90
84 Full, Time 0.92 Full, No Time 0.92 Situations, Time 0.92
86 Psychological, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
87 Full, No Time 0.27 Situations, Time 0.45 Full, No Time 0.36
6.1.3.1.6 Sick
(tmp %>% filter(outcome == "sick"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Sick for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
02 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.92
03 Psychological, No Time 0.90 Psychological, No Time 0.90 Psychological, No Time 0.90
08 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.91
10 Psychological, Time 0.91 Psychological, No Time 0.91 Psychological, No Time 0.89
103 Psychological, No Time 0.69 Psychological, Time 0.62 Situations, No Time 0.62
105 Psychological, No Time 0.93 Psychological, No Time 0.93 Psychological, Time 0.93
106 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.94
107 Situations, Time 0.93 Psychological, No Time 0.53 Situations, Time 0.93
108 Full, No Time 0.95 Full, Time 0.95 Situations, No Time 0.95
118 Psychological, Time 0.90 Psychological, No Time 0.91 Psychological, Time 0.88
126 Full, No Time 0.92 Full, No Time 0.92 Full, No Time 0.91
129 Situations, Time 0.92 Full, No Time 0.67 Situations, No Time 0.67
135 Situations, No Time 0.71 Full, No Time 0.71 Full, No Time 0.92
149 Full, No Time 0.79 Psychological, No Time 0.79 Full, No Time 0.81
152 Full, No Time 0.80 Full, No Time 0.80 Situations, No Time 0.80
155 Full, No Time 0.78 Full, No Time 0.78 Situations, No Time 0.78
157 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
158 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.93
159 Full, Time 0.95 Full, Time 0.95 Situations, Time 0.95
160 Full, No Time 0.89 Full, No Time 0.89 Full, No Time 0.89
162 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
164 Full, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
167 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.90
168 Full, Time 0.77 Full, Time 0.92 Full, Time 0.75
170 Full, No Time 0.77 Full, Time 0.77 Situations, No Time 0.77
18 Situations, No Time 0.84 Situations, No Time 0.74 Psychological, No Time 0.88
180 Full, No Time 0.55 Situations, Time 0.73 Situations, Time 0.64
181 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.90
185 Full, No Time 0.90 Psychological, No Time 0.90 Situations, No Time 0.90
189 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.91
190 Full, No Time 0.71 Psychological, No Time 0.80 Psychological, No Time 0.80
192 Full, No Time 0.77 Full, Time 0.85 Situations, No Time 0.85
196 Full, Time 0.92 Psychological, Time 0.92 Situations, No Time 0.92
20 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
201 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.91
206 Psychological, Time 0.94 Full, No Time 0.89 Situations, No Time 0.94
21 Full, Time 0.87 Psychological, No Time 0.93 Full, No Time 0.86
211 Psychological, No Time 0.96 Full, No Time 0.96 Situations, No Time 0.96
214 Full, No Time 0.94 Full, No Time 0.94 Situations, No Time 0.93
22 Full, No Time 0.79 Full, No Time 0.79 Situations, No Time 0.85
25 Full, No Time 0.92 Full, No Time 0.83 Situations, No Time 0.92
27 Full, No Time 0.67 Psychological, No Time 0.75 Situations, Time 0.70
28 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
31 Full, Time 0.93 Psychological, No Time 0.93 Full, No Time 0.92
32 Full, No Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
35 Full, No Time 0.92 Psychological, No Time 0.75 Full, No Time 0.91
38 Psychological, No Time 0.93 Psychological, No Time 0.93 Situations, No Time 0.93
40 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
43 Full, No Time 0.64 Full, No Time 0.55 Full, No Time 0.20
51 Full, No Time 0.55 Full, No Time 0.64 Psychological, No Time 0.55
63 Full, No Time 0.91 Full, No Time 0.91 Full, No Time 0.91
67 Full, No Time 0.79 Situations, No Time 0.86 Situations, No Time 0.77
71 Psychological, No Time 0.82 Full, No Time 0.73 Full, No Time 0.70
73 Full, No Time 0.93 Full, No Time 0.93 Full, No Time 0.92
77 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
82 Psychological, No Time 0.92 Psychological, No Time 0.92 Psychological, No Time 0.92
6.1.3.1.7 Interacted
(tmp %>% filter(outcome == "interacted"))$tab[[1]]
(#tab:px bm fun)Table SX
Feature Set and Accuracy for Predicting Interacted for Each Participant’s Best Model
Elastic Net
BISCWIT
Random Forest
ID Feature Set Accuracy Feature Set Accuracy Feature Set Accuracy
01 Full, No Time 0.73 Psychological, No Time 0.82 Psychological, No Time 0.82
02 Full, No Time 0.69 Full, No Time 0.77 Full, No Time 0.67
03 Psychological, No Time 0.50 Psychological, No Time 0.30 Psychological, No Time 0.30
05 Psychological, Time 0.58 Psychological, Time 0.58 Full, Time 0.73
08 Full, Time 0.67 Psychological, No Time 0.67 Full, Time 0.64
09 Psychological, No Time 0.45 Psychological, No Time 0.45 Psychological, Time 0.22
10 Psychological, Time 0.45 Psychological, Time 0.64 Psychological, No Time 0.78
103 Situations, No Time 0.56 Situations, No Time 0.62 Situations, No Time 0.50
105 Psychological, No Time 0.80 Psychological, No Time 0.80 Psychological, No Time 0.79
106 Full, Time 0.69 Psychological, Time 0.62 Psychological, No Time 0.60
107 Psychological, Time 0.67 Full, No Time 0.73 Full, No Time 0.54
108 Psychological, No Time 0.65 Situations, No Time 0.65 Full, No Time 0.69
110 Full, No Time 0.83 Psychological, No Time 0.92 Situations, No Time 0.67
111 Full, No Time 0.90 Full, No Time 0.90 Situations, No Time 0.90
112 Full, No Time 0.85 Full, No Time 0.77 Situations, No Time 0.85
113 Full, Time 0.70 Situations, No Time 0.60 Situations, Time 0.70
118 Psychological, Time 0.40 Psychological, Time 0.50 Psychological, No Time 0.62
119 Full, No Time 0.36 Full, Time 0.71 Situations, Time 0.71
123 Situations, Time 0.47 Full, Time 0.47 Full, No Time 0.43
124 Psychological, No Time 0.82 Full, Time 0.89
126 Full, No Time 0.83 Psychological, No Time 0.75 Full, No Time 0.82
129 Full, No Time 0.83 Full, Time 0.92 Situations, No Time 0.83
132 Full, Time 0.55 Full, No Time 0.64 Psychological, Time 0.56
133 Full, No Time 0.90 Full, No Time 0.90 Full, No Time 0.90
135 Full, Time 0.93 Full, No Time 0.93 Situations, No Time 0.93
14 Full, No Time 0.75 Psychological, No Time 0.67 Situations, No Time 0.75
146 Psychological, No Time 0.47 Situations, No Time 0.65 Psychological, No Time 0.47
148 Full, No Time 0.58 Situations, No Time 0.67 Full, No Time 0.80
149 Situations, No Time 0.63 Situations, Time 0.56 Situations, No Time 0.74
150 Situations, No Time 0.60 Situations, No Time 0.48 Situations, No Time 0.42
152 Situations, Time 0.62 Psychological, Time 0.67 Psychological, Time 0.64
154 Psychological, Time 0.53 Full, Time 0.56 Psychological, No Time 0.56
155 Situations, No Time 0.78 Situations, No Time 0.67 Full, Time 0.53
156 Full, Time 0.76 Full, No Time 0.71 Situations, Time 0.75
157 Full, Time 0.60 Psychological, No Time 0.67 Situations, No Time 0.62
158 Psychological, No Time 0.93 Psychological, No Time 0.67 Full, Time 0.93
159 Full, No Time 0.65 Psychological, No Time 0.55 Full, No Time 0.74
160 Psychological, No Time 0.78 Psychological, Time 0.72 Psychological, No Time 0.78
162 Situations, Time 0.85 Situations, Time 0.77 Situations, Time 0.50
164 Full, Time 0.70 Full, Time 0.74 Full, Time 0.81
165 Psychological, No Time 0.55 Situations, No Time 0.55 Situations, No Time 0.50
166 Full, Time 0.58 Full, No Time 0.58 Situations, Time 0.55
167 Full, Time 0.82 Full, No Time 0.82 Full, No Time 0.80
168 Full, No Time 0.77 Full, No Time 0.77 Full, No Time 0.77
169 Psychological, No Time 0.94 Psychological, No Time 0.94 Psychological, No Time 0.87
17 Situations, No Time 0.79 Full, Time 0.77 Full, Time 0.83
170 Full, No Time 0.69 Full, No Time 0.69 Full, No Time 0.75
171 Situations, No Time 0.68 Psychological, No Time 0.52 Full, No Time 0.73
174 Psychological, Time 0.76 Psychological, Time 0.76 Full, No Time 0.78
18 Full, Time 0.58 Full, Time 0.63 Situations, No Time 0.44
180 Psychological, Time 0.82 Full, Time 0.73 Situations, Time 0.82
181 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.90
184 Full, No Time 0.92 Full, No Time 0.77 Full, No Time 0.90
185 Full, No Time 0.90 Situations, Time 0.84 Full, No Time 0.89
186 Psychological, No Time 0.93 Psychological, No Time 0.80 Full, No Time 0.92
187 Full, No Time 0.95 Full, No Time 0.95 Situations, No Time 0.95
188 Full, No Time 0.58 Psychological, No Time 0.67 Situations, No Time 0.67
189 Full, No Time 0.67 Psychological, Time 0.75 Situations, No Time 0.64
190 Full, No Time 0.64 Full, No Time 0.64 Full, No Time 0.62
192 Full, Time 0.69 Full, No Time 0.69 Situations, Time 0.69
195 Full, No Time 0.82 Full, Time 0.69 Situations, No Time 0.81
196 Full, No Time 0.50 Full, Time 0.58 Full, No Time 0.18
20 Full, No Time 0.64 Situations, Time 0.71 Situations, No Time 0.64
201 Psychological, No Time 0.82 Psychological, No Time 0.82 Full, No Time 0.60
206 Full, Time 0.83 Full, No Time 0.83 Full, No Time 0.88
207 Full, Time 0.46 Full, No Time 0.50 Situations, No Time 0.54
209 Full, No Time 0.83 Psychological, Time 0.79 Full, No Time 0.91
21 Situations, No Time 0.73 Situations, No Time 0.67 Full, Time 0.57
211 Full, No Time 0.89 Psychological, No Time 0.85 Situations, No Time 0.88
212 Full, Time 0.80 Full, No Time 0.81 Situations, No Time 0.75
214 Full, No Time 0.75 Psychological, Time 0.81 Full, No Time 0.75
216 Full, No Time 0.74 Psychological, No Time 0.78 Full, No Time 0.75
22 Situations, Time 0.50 Situations, Time 0.67 Situations, Time 0.73
220 Full, Time 0.64 Full, Time 0.64 Full, Time 0.64
221 Full, No Time 0.75 Full, No Time 0.78 Full, No Time 0.76
23 Psychological, No Time 0.86 Full, No Time 0.86 Situations, No Time 0.92
25 Full, No Time 0.83 Full, No Time 0.83 Full, No Time 0.90
26 Situations, Time 0.71 Full, Time 0.57 Situations, Time 0.57
27 Full, No Time 0.92 Full, No Time 0.92 Situations, No Time 0.92
28 Full, No Time 0.50 Situations, No Time 0.57 Situations, Time 0.69
30 Psychological, Time 0.46 Psychological, Time 0.62 Full, No Time 0.54
31 Situations, Time 0.93 Psychological, No Time 0.71 Situations, No Time 0.92
32 Psychological, No Time 0.57 Psychological, No Time 0.57 Full, No Time 0.62
33 Full, No Time 0.82 Situations, No Time 0.82 Full, No Time 0.89
35 Full, No Time 0.58 Situations, No Time 0.75 Full, No Time 0.64
36 Full, No Time 0.75 Situations, Time 0.64 Situations, No Time 0.64
38 Full, No Time 0.79 Full, Time 0.82 Situations, No Time 0.57
39 Full, No Time 0.14 Situations, Time 0.57 Full, No Time 0.33
40 Situations, No Time 0.73 Full, No Time 0.82 Situations, No Time 0.73
43 Full, No Time 0.82 Situations, No Time 0.73 Full, No Time 0.80
49 Psychological, No Time 0.55 Psychological, No Time 0.64 Psychological, No Time 0.90
51 Full, Time 0.55 Psychological, No Time 0.67 Full, Time 0.70
52 Situations, No Time 0.64 Full, No Time 0.64 Full, No Time 0.89
53 Full, No Time 0.53 Situations, No Time 0.47 Psychological, No Time 0.53
58 Psychological, No Time 0.55 Psychological, Time 0.64 Psychological, No Time 0.20
61 Psychological, Time 0.82 Psychological, No Time 0.36 Psychological, No Time 0.73
63 Situations, No Time 0.82 Situations, No Time 0.91 Full, No Time 0.82
66 Full, No Time 0.91 Full, No Time 0.91 Situations, No Time 0.91
67 Full, No Time 0.86 Full, No Time 0.86 Situations, No Time 0.77
71 Full, No Time 0.27 Full, Time 0.55 Situations, Time 0.50
72 Full, Time 0.69 Full, No Time 0.50 Situations, No Time 0.77
73 Full, Time 0.77 Full, No Time 0.57 Full, No Time 0.62
74 Situations, No Time 0.57 Situations, No Time 0.50 Situations, Time 0.77
77 Psychological, No Time 0.80 Psychological, No Time 0.80 Full, No Time 0.62
78 Psychological, No Time 0.64 Situations, No Time 0.64 Full, No Time 0.70
81 Psychological, Time 0.64 Psychological, No Time 0.42 Psychological, No Time 0.80
82 Situations, No Time 0.67 Situations, No Time 0.75 Full, No Time 0.55
84 Full, No Time 0.69 Psychological, No Time 0.69 Situations, No Time 0.69
85 Full, Time 0.62 Psychological, Time 0.31 Full, Time 0.67
86 Situations, Time 0.69 Situations, Time 0.69 Situations, Time 0.54
87 Full, No Time 0.82 Psychological, No Time 0.82 Full, No Time 0.82

6.1.3.2 Classification Accuracy and AUC

6.1.3.2.1 Table

Similar to how we created tables for each outcome, feature set, and metric in the first section, we will next create a single, similar table for participants best models, summarizing the mean, standard deviation, median, and range for each outcome, method, and metric. In the manuscript, this will be summarized in a figure, but I’m still creating the table for ease of access.

bm_tab <- best_mods %>%
  group_by(model, outcome, .metric) %>%
  summarize_at(vars(.estimate), lst(mean, sd, median, min, max, n=~sum(!is.na(.)))) %>%
  ungroup() %>%
  mutate(sd = ifelse(sd < .01, "<.01", sprintf("%.2f", sd)),
         mean = sprintf("%.2f (%s)", mean, sd),
         range = sprintf("%.2f-%.2f", min, max),
         median = sprintf("%.2f", median),
         model = factor(model, levels = c("glmnet", "biscwit", "rf")),
         outcome = factor(outcome, rev(outcomes$trait), rev(outcomes$long_name)),
         .metric = factor(.metric, c("accuracy", "roc_auc"), c("Accuracy", "AUC"))
         ) %>%
  select(-sd, -min, -max) %>%
  pivot_wider(names_from = "model"
              , values_from = c(mean, median, range, n)
              , names_glue = "{model}_{.value}") %>%
  arrange(outcome, .metric)

rs <- bm_tab %>% group_by(outcome) %>% tally() %>% 
    mutate(end = cumsum(n), start = lag(end) + 1, start = ifelse(is.na(start), 1, start))

bm_tab <- bm_tab %>%
  select(.metric, contains("glmnet"), contains("biscwit"), contains("rf")) %>%
  kable(.
        , "html"
        , escape = F
        , col.names = c("Metric", rep(c("<em>M</em> (<em>SD</em>)", "Median", "Range", "<em>N</em>"), times = 3))
        , align = c("r", rep("c",12))
        , cap = "<strong>Table X</strong><br><em>Descriptive Statistics of Model Performance Across of the Best Performing Model for Each Participant</em>"
        ) %>%
  kable_styling(full_width = F) %>%
  add_header_above(c(" " = 1, "Elastic Net" = 4, "BISCWIT" = 4, "Random Forest" = 4)) %>%
  footnote("Accuracy = Classification accuracy; AUC = Area under the receiver operating characteristic (ROC) curve.")

for(i in 1:nrow(rs)){
  bm_tab <- bm_tab %>%
    kableExtra::group_rows(rs$outcome[i], rs$start[i], rs$end[i])
}
save_kable(bm_tab, file = sprintf("%s/05-results/04-tables/01-best-summary.html", local_path))
bm_tab
(#tab:bm tab)Table X
Descriptive Statistics of Model Performance Across of the Best Performing Model for Each Participant
Elastic Net
BISCWIT
Random Forest
Metric M (SD) Median Range N M (SD) Median Range N M (SD) Median Range N
Lonely
Accuracy 0.87 (0.09) 0.91 0.58-0.96 51 0.87 (0.09) 0.92 0.58-0.96 52 0.88 (0.08) 0.91 0.64-0.96 51
AUC 0.69 (0.22) 0.74 0.07-0.96 51 0.69 (0.21) 0.72 0.18-0.96 52 0.63 (0.15) 0.58 0.43-0.93 49
Procrastinating
Accuracy 0.82 (0.13) 0.86 0.46-0.96 87 0.82 (0.12) 0.86 0.53-0.96 87 0.81 (0.15) 0.90 0.33-0.96 86
AUC 0.73 (0.16) 0.76 0.33-0.96 86 0.67 (0.18) 0.69 0.28-0.97 87 0.66 (0.18) 0.65 0.28-0.97 86
Interacted
Accuracy 0.70 (0.16) 0.69 0.14-0.95 110 0.69 (0.14) 0.69 0.30-0.95 111 0.70 (0.17) 0.73 0.18-0.95 111
AUC 0.68 (0.15) 0.69 0.29-0.96 110 0.62 (0.16) 0.62 0.28-0.97 111 0.64 (0.15) 0.63 0.24-0.92 111
Argument
Accuracy 0.89 (0.07) 0.92 0.67-0.96 34 0.89 (0.07) 0.92 0.67-0.96 35 0.89 (0.07) 0.92 0.69-0.96 34
AUC 0.74 (0.16) 0.77 0.40-0.97 34 0.69 (0.18) 0.70 0.18-0.93 35 0.63 (0.19) 0.52 0.33-0.94 34
Studying
Accuracy 0.79 (0.14) 0.83 0.40-0.96 110 0.77 (0.14) 0.81 0.40-0.96 110 0.78 (0.16) 0.83 0.27-0.96 109
AUC 0.68 (0.17) 0.70 0.22-0.96 110 0.69 (0.17) 0.70 0.17-0.97 110 0.63 (0.16) 0.60 0.00-0.94 109
Sick
Accuracy 0.86 (0.10) 0.91 0.55-0.96 56 0.86 (0.11) 0.91 0.53-0.96 56 0.86 (0.13) 0.91 0.20-0.96 56
AUC 0.70 (0.21) 0.73 0.00-0.97 56 0.72 (0.19) 0.77 0.22-0.97 55 0.65 (0.17) 0.61 0.35-0.93 56
Tired
Accuracy 0.78 (0.16) 0.81 0.17-0.96 97 0.78 (0.15) 0.82 0.43-0.96 98 0.79 (0.15) 0.82 0.36-0.96 98
AUC 0.67 (0.18) 0.70 0.11-0.98 97 0.63 (0.18) 0.65 0.10-0.93 98 0.64 (0.17) 0.59 0.07-0.94 98
Note:
Accuracy = Classification accuracy; AUC = Area under the receiver operating characteristic (ROC) curve.

There are a few key takeaways from this table. First, accuracy across all models and outcomes was quite high, with mean accuracy of .87 (Median .91 to .92) for loneliness and between .82 and .83 (Median .88 to .89) for procrastination. Similarly, AUC was also well above the .5 threshold with means ranging from .70 to .76 (Median .75 to .80) for loneliness and .69 to .70 (Median .70 to .75) for procrastination.

6.1.3.2.2 Figure (Figure 1)

Now, we’ll create distributions of the performance (accuracy, AUC) of participants’ best models and plot those along with the descriptive statistics that were created for the Supplementary Table in the previous section. This figure will become Figure 1 in the manuscript.

p_dist_fun <- function(d, outcome) {
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  d %>% 
    mutate(model = factor(model, c("glmnet", "biscwit", "rf")
                            , c("Elastic Net", "BISCWIT", "Random Forest"))
             , .metric = factor(.metric, c("accuracy", "roc_auc"), c("Accuracy", "AUC"))
             , group = factor(str_to_title(group))) %>%
      ggplot(aes(y = model, x = .estimate)) + 
        scale_x_continuous(limits = c(0,1), breaks = seq(0,1,.5)) + 
        geom_density_ridges(aes(fill = model), alpha = .5) +
        stat_pointinterval() +
        geom_vline(aes(xintercept = .5), linetype = "dashed") +
        labs(x = NULL, y = NULL, title = o) + 
        facet_wrap(~.metric, scales = "free", nrow = 2) +
        theme_classic() + 
        theme(legend.position = "none"
              , axis.text = element_text(face = "bold")
              , axis.title = element_text(face = "bold")
              , strip.background = element_blank()
              , strip.text.y = element_blank()
              , plot.margin = margin(.1,.1,1,.1, unit = "cm")
              , strip.text = element_text(face = "bold", size = rel(1.2))
              , plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
}

bm_dist <- best_mods %>% 
  group_by(outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(p = map2(data, outcome, p_dist_fun))

tab_fun <- function(d){
  tab <- d %>%
    select(-model) %>%
    setNames(c("M (SD)", "Median", "N", "Range")) %>%
    tableGrob(rows = NULL
              , theme = ttheme_minimal(base_family = "Times"))
  tab <- gtable_add_grob(tab,
        grobs = segmentsGrob( # line across the bottom
            x0 = unit(0,"npc"),
            y0 = unit(0,"npc"),
            x1 = unit(1,"npc"),
            y1 = unit(0,"npc"),
            gp = gpar(lwd = 2.0)),
        t = 1, b = 1, l = 1, ncol(tab))
  tab$grobs[1:4] <- lapply(tab$grobs[1:4], function(x) {x$grobs[[1]]$gp$fontface = "bold"; return(x)}) 
  return(tab)
}

bm_tbl <- best_mods %>%
  group_by(model, outcome, .metric) %>%
  summarize_at(vars(.estimate), lst(mean, sd, median, min, max, n=~sum(!is.na(.)))) %>%
  ungroup() %>%
  mutate(sd = ifelse(sd < .01, "<.01", sprintf("%.2f", sd)),
         mean = sprintf("%.2f (%s)", mean, sd),
         range = sprintf("%.2f-%.2f", min, max),
         median = sprintf("%.2f", median),
         model = factor(model, levels = c("glmnet", "biscwit", "rf"),
                        labels = c("Elastic Net", "BISCWIT", "Random Forest")),
         .metric = factor(.metric, c("accuracy", "roc_auc"), c("Accuracy", "AUC"))
         ) %>%
  select(-sd, -min, -max) %>%
  arrange(outcome, .metric, model) %>%
  group_by(outcome, .metric) %>% 
  nest() %>%
  ungroup() %>%
  mutate(tab = map(data, tab_fun))

bm_dist %>%
  select(-data) %>%
  full_join(bm_tbl %>% select(-data) %>% group_by(outcome) %>% nest() %>% ungroup())
## # A tibble: 7 × 3
##   outcome    p      data            
##   <chr>      <list> <list>          
## 1 argument   <gg>   <tibble [2 × 2]>
## 2 interacted <gg>   <tibble [2 × 2]>
## 3 prcrst     <gg>   <tibble [2 × 2]>
## 4 study      <gg>   <tibble [2 × 2]>
## 5 tired      <gg>   <tibble [2 × 2]>
## 6 sick       <gg>   <tibble [2 × 2]>
## 7 lonely     <gg>   <tibble [2 × 2]>
bm_comb_fun <- function(p, d, out, rn){
  o <- mapvalues(out, outcomes$trait, outcomes$long_name, warn_missing = F)
  
  my_theme <- function(...) {
    theme_classic() + 
      theme(plot.title = element_text(face = "bold"))
  }
  
  title_theme <- calc_element("plot.title", my_theme())
  
  ttl <- ggdraw() + 
      draw_label(
          o,
          fontfamily = title_theme$family,
          fontface = title_theme$face,
          size = title_theme$size
      )
  # p1 <- if(rn %in% c(1,3,5,7)) {p + labs(title = NULL)} else {p + labs(title = NULL) + theme(axis.text.y = element_blank())}
  p1 <- p + labs(title = NULL)
  # wdth <- if(rn %in% c(1,3,5,7)) c(.5, .5) else c(.4, .6)
  wdth <- c(.5,.5)
  bm_tab1 <- plot_grid(d$tab[[1]], d$tab[[2]], nrow = 2)
  bm_p <- plot_grid(p1, bm_tab1, ncol = 2, rel_widths = wdth)
  bm_p <- plot_grid(ttl, bm_p, nrow = 2, rel_heights = c(.05,.95))
  ggsave(bm_p, file = sprintf("%s/05-results/05-figures/04-best-mod-dist/%s.pdf", local_path, out)
         , width = 6, height = 3.5)
  ggsave(bm_p, file = sprintf("%s/05-results/05-figures/04-best-mod-dist/%s.png", local_path, out)
         , width = 6, height = 3.5)
  return(bm_p)
}

bm_dist_comb <- bm_dist %>%
  select(-data) %>%
  full_join(bm_tbl %>% select(-data) %>% group_by(outcome) %>% nest() %>% ungroup()) %>%
  mutate(outcome = factor(outcome, rev(unique(outcomes$trait)))) %>%
  arrange(outcome) %>%
  mutate(p2 = pmap(list(p, data, outcome, row_number()), bm_comb_fun))

bm_plot <- plot_grid(bm_dist_comb$p2[[1]]
                     , bm_dist_comb$p2[[2]]
                     , bm_dist_comb$p2[[5]]
                     , ncol = 1
                     # , rel_widths = c(.55, .45)
                     ); bm_plot
Histograms of classification accuracy and Area Under the Receiver Operator Curve (AUC) for participants’ best models.

(#fig:fig 1)Histograms of classification accuracy and Area Under the Receiver Operator Curve (AUC) for participants’ best models.

ggsave(bm_plot, file = sprintf("%s/05-results/05-figures/fig-1-best-models.pdf", local_path)
       , width = 5, height = 12)
ggsave(bm_plot, file = sprintf("%s/05-results/05-figures/fig-1-best-models.png", local_path)
       , width = 5, height = 12)

bm_plot_all <- plot_grid(
  bm_dist_comb$p2[[1]]
  , bm_dist_comb$p2[[2]]
  , bm_dist_comb$p2[[3]]
  , bm_dist_comb$p2[[4]]
  , bm_dist_comb$p2[[5]]
  , bm_dist_comb$p2[[6]]
  , bm_dist_comb$p2[[7]]
  , ncol = 2
  , rel_widths = c(.5, .5)
)
ggsave(bm_plot_all, file = sprintf("%s/05-results/05-figures/04-best-mod-dist/best-models.pdf", local_path)
       , width = 12, height = 16)
ggsave(bm_plot_all, file = sprintf("%s/05-results/05-figures/04-best-mod-dist/best-models.png", local_path)
       , width = 12, height = 16)

Figure 1 presents histograms and descriptive statistics of accuracy and AUC across the full sample for each outcome and model. As is clear in the figure, predictive accuracy was high overall, with mean accuracy of .87 (Median .91 to .92) for loneliness and between .82 and .83 (Median .88 to .89) for procrastination. Similarly, AUC was also well above the .5 threshold with means ranging from .70 to .76 (Median .75 to .80) for loneliness and .69 to .70 (Median .70 to .75) for procrastination.

6.1.4 Tuning Parameters (Table)

Next, I’m going to create tables that include the tuning parameters, features, and accuracy for each participants best model for each machine learning method and outcome as well as which feature set was used in their best model.

px_tun_par_tab_fun <- function(d, model, outcome){
  if(model == "glmnet"){
    cn <- c("ID","Group", "Penalty", "Mixture", "# Features", "Accuracy")
    al <- c(rep("r", 2), rep("c", 4))
    tab <- d %>% 
      mutate(group = str_to_title(paste(group, time, sep = ", "))) %>%
      select(SID, group, penalty, mixture, nvars, .estimate) %>%
      mutate(penalty = ifelse(penalty < .01, sprintf("%.1e", penalty), sprintf("%.2f", penalty))
             , .estimate = sprintf("%.2f", .estimate)
             , mixture = ifelse(mixture == 0, "0", sprintf("%.2f", mixture)))
  } else if(model == "rf"){
    cn <- c("ID","Group", "# Features Sampled", "Min N for Split", "# Features", "Accuracy")
    al <- c(rep("r", 2), rep("c", 4))
    tab <- d %>% 
      mutate(group = str_to_title(paste(group, time, sep = ", "))) %>%
      select(SID, group, mtry, min_n, nvars, .estimate) %>%
      mutate(.estimate = sprintf("%.2f", .estimate))
  } else {
    cn <- c("ID","Group", "# Items", "# Features", "Accuracy")
    al <- c(rep("r", 2), rep("c", 3))
    tab <- d %>% 
      mutate(group = str_to_title(paste(group, time, sep = ", "))) %>%
      select(SID, group, nitem, nvars, .estimate) %>%
      mutate(.estimate = sprintf("%.2f", .estimate))
  }
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  m <- mapvalues(model, c("glmnet", "rf", "biscwit"), c("Elastic Net", "Random Forest", "BISCWIT"))
  cap <- sprintf("<strong>Table X</strong><br><em>Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants' Best Model of %s Using %s", o, m)
  tab <- tab %>%
    kable(.
          , "html"
          , escape = "F"
          , col.names = cn
          , align = al
          , cap = cap
          ) %>%
    kable_styling(full_width = F)
  save_kable(tab, file = sprintf("%s/05-results/04-tables/03-px-tuning-params/%s_%s.html", local_path, outcome, model))
  return(tab)
}

tuning_param <- param_res %>%
  right_join(best_mods %>% select(-.estimator, -.config)) %>%
  select(-coefs) %>%
  group_by(outcome, model) %>%
  nest() %>%
  ungroup() %>%
  mutate(data = map(data, ~(.) %>% unnest(params) %>% filter(.metric == "accuracy")),
         tab = pmap(list(data, model, outcome), px_tun_par_tab_fun))

6.1.4.1 Elastic Net

Rather than splitting these by outcome and model, I’m going to do a broad discussion across outcomes. From the tables, a few things become clear – penalties tended to be quite low (near 0) or quite high (near 1). Indeed, of the 10 tested values, only 3 appeared: 0.0000000001, 0.08, and 1.00. For mixture, the most frequent value was 0, but there was was a also more variability than for penalty, with almost all of the 10 possible values being represented. The number of features tended to vary quite widely and does not appear to be a function of stronger penalties or mixture values. The tuning parameters also appear to have little effect on model accuracy.

tmp <- tuning_param %>% 
  filter(model == "glmnet") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.1.4.1.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Lonely Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
03 Psychological, No Time 1.0e-10 0 25 0.90
08 Situations, No Time 1.0e-10 0.11 15 0.83
103 Full, No Time 1.0e-10 0 46 0.94
105 Full, No Time 1.0e-10 0 43 0.85
106 Full, No Time 1.0e-10 0 43 0.94
108 Psychological, No Time 1.00 0 25 0.80
112 Full, No Time 1.0e-10 0 36 0.69
118 Psychological, No Time 0.08 0.11 23 0.73
119 Full, No Time 1.0e-10 0 42 0.93
123 Full, No Time 1.0e-10 0 40 0.93
129 Full, No Time 1.0e-10 0 44 0.58
133 Full, No Time 1.0e-10 0 41 0.90
135 Full, Time 1.0e-10 0 58 0.93
146 Full, No Time 1.00 0 42 0.94
149 Full, No Time 1.0e-10 0 45 0.95
150 Full, No Time 1.00 0 40 0.96
152 Full, No Time 0.08 0 43 0.92
154 Full, No Time 6.0e-03 0.33 33 0.94
155 Full, No Time 1.0e-10 0.11 41 0.83
157 Full, No Time 1.0e-10 0 44 0.90
158 Full, Time 1.0e-10 0 60 0.93
160 Full, No Time 0.08 0 41 0.83
164 Full, No Time 1.0e-10 0 44 0.96
168 Full, No Time 1.0e-10 0.11 40 0.69
170 Psychological, No Time 0.08 0.89 20 0.95
18 Psychological, No Time 1.00 0 25 0.95
185 Situations, Time 0.08 0 36 0.68
186 Full, Time 1.0e-10 0 56 0.93
196 Full, No Time 1.0e-10 0 41 0.92
20 Full, No Time 1.0e-10 0 43 0.93
201 Full, No Time 1.0e-10 0 42 0.82
206 Full, Time 1.0e-10 0 64 0.89
207 Full, Time 1.0e-10 0 56 0.92
211 Full, No Time 1.00 0 39 0.81
212 Full, No Time 1.0e-10 0 47 0.95
214 Full, No Time 0.08 0.56 33 0.75
220 Full, No Time 1.0e-10 0 43 0.92
25 Full, No Time 1.0e-10 0 45 0.75
27 Full, No Time 1.0e-10 0 46 0.83
32 Full, No Time 1.0e-10 0 46 0.93
35 Psychological, No Time 1.00 0 23 0.83
36 Full, No Time 1.0e-10 0 41 0.92
43 Full, No Time 1.0e-10 0 43 0.82
51 Psychological, No Time 1.00 0 25 0.75
53 Full, No Time 1.0e-10 0 43 0.93
63 Full, No Time 1.0e-10 0 44 0.91
73 Full, No Time 1.0e-10 0 45 0.93
84 Full, No Time 1.0e-10 0 41 0.92
6.1.4.1.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Procrastinating Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
01 Full, No Time 1.0e-10 0 40 0.91
02 Full, No Time 1.0e-10 0 39 0.85
03 Psychological, No Time 1.00 0.22 25 0.90
05 Psychological, No Time 1.00 0 25 0.92
09 Psychological, No Time 1.0e-10 0 25 0.91
103 Psychological, Time 1.0e-10 0.44 37 0.69
105 Full, No Time 1.0e-10 0 43 0.92
106 Situations, No Time 0.08 0.56 18 0.75
107 Full, Time 1.0e-10 0 58 0.93
108 Full, No Time 1.00 0.11 40 0.55
110 Full, No Time 1.0e-10 0 36 0.92
111 Full, Time 1.0e-10 0 58 0.90
112 Psychological, Time 1.0e-10 0 41 0.69
118 Psychological, No Time 1.0e-10 0 25 0.64
119 Psychological, Time 1.0e-10 0 41 0.64
123 Full, Time 1.0e-10 0 58 0.80
124 Full, No Time 1.0e-10 0.56 26 0.73
126 Full, No Time 6.0e-03 0.78 28 0.50
129 Full, No Time 1.0e-10 0.67 28 0.83
135 Full, No Time 1.0e-10 0 42 0.93
146 Situations, No Time 1.00 0.11 17 0.59
148 Psychological, No Time 1.0e-10 0 24 0.67
149 Situations, No Time 1.00 0 20 0.63
150 Full, No Time 1.0e-10 0 40 0.72
152 Full, No Time 1.00 0 43 0.88
155 Full, No Time 1.00 0 43 0.56
156 Psychological, Time 1.00 0.11 42 0.52
157 Situations, Time 1.00 0 36 0.95
158 Full, Time 1.00 0.22 54 0.73
159 Full, No Time 1.0e-10 0 43 0.90
160 Full, No Time 0.08 0 41 0.89
162 Full, No Time 1.0e-10 0 40 0.93
165 Full, No Time 0.08 1.00 17 0.73
166 Full, Time 1.0e-10 0 57 0.58
167 Situations, No Time 0.08 0.67 17 0.64
168 Full, Time 1.0e-10 0.11 51 0.69
169 Psychological, No Time 0.08 0 25 0.94
17 Full, Time 1.0e-10 0 60 0.46
171 Full, No Time 0.08 0 27 0.96
174 Full, Time 1.0e-10 0 53 0.96
185 Full, No Time 0.08 0 43 0.95
186 Psychological, Time 1.0e-10 0 42 0.80
188 Full, No Time 1.0e-10 0 45 0.92
189 Full, No Time 1.0e-10 0 41 0.83
190 Psychological, No Time 1.00 0 25 0.93
192 Full, No Time 1.0e-10 0 41 0.92
195 Full, No Time 1.0e-10 0 42 0.94
196 Full, No Time 1.0e-10 0 41 0.83
20 Full, No Time 1.0e-10 0 43 0.79
206 Full, Time 1.0e-10 0 64 0.89
207 Psychological, No Time 1.00 0 25 0.86
21 Full, No Time 1.0e-10 0 43 0.60
211 Full, No Time 1.0e-10 0 39 0.96
212 Full, No Time 1.00 0 47 0.95
214 Full, Time 1.0e-10 0 59 0.94
216 Psychological, No Time 0.08 0 25 0.81
22 Full, Time 1.0e-10 0 62 0.75
220 Psychological, No Time 1.00 0.11 25 0.92
25 Full, No Time 1.00 0.22 42 0.75
26 Full, No Time 1.0e-10 0 42 0.81
27 Situations, No Time 6.0e-03 1.00 20 0.83
30 Full, Time 1.0e-10 0 58 0.92
31 Full, No Time 1.0e-10 0 40 0.93
32 Full, No Time 1.0e-10 0 46 0.86
33 Full, No Time 1.0e-10 0 33 0.91
35 Full, No Time 1.0e-10 0 41 0.83
38 Psychological, No Time 1.00 0 25 0.67
40 Full, No Time 1.0e-10 0 39 0.91
43 Full, No Time 1.0e-10 0 43 0.91
49 Psychological, Time 1.0e-10 0 42 0.73
51 Psychological, No Time 1.0e-10 0 25 0.92
53 Full, No Time 1.0e-10 0 42 0.93
61 Psychological, No Time 1.0e-10 0 25 0.91
63 Full, No Time 1.0e-10 0 44 0.91
66 Full, No Time 1.0e-10 0 44 0.91
67 Full, No Time 1.0e-10 0 43 0.71
71 Psychological, No Time 1.0e-10 0 25 0.73
73 Full, No Time 1.0e-10 0 45 0.86
77 Full, No Time 1.0e-10 0 41 0.90
84 Full, No Time 1.0e-10 0 40 0.92
86 Full, No Time 1.0e-10 0 35 0.93
6.1.4.1.3 Studying
(tmp %>% filter(outcome == "study"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Studying Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
01 Full, No Time 1.0e-10 0 39 0.91
02 Situations, No Time 6.0e-03 0.56 13 0.69
03 Psychological, No Time 1.00 0.22 24 0.80
09 Psychological, No Time 1.00 0 25 0.91
10 Psychological, No Time 1.00 0 23 0.73
103 Psychological, Time 1.00 0.22 41 0.56
105 Full, Time 0.08 0.44 34 0.92
106 Situations, Time 1.00 0.11 33 0.69
107 Full, Time 1.0e-10 0 57 0.53
108 Psychological, Time 1.00 0 41 0.65
110 Full, Time 1.0e-10 0 53 0.83
111 Situations, Time 0.08 0.11 29 0.70
112 Psychological, No Time 1.00 0 25 0.77
113 Full, No Time 1.0e-10 0 38 0.90
118 Psychological, No Time 1.0e-10 0 25 0.82
119 Full, No Time 1.00 0.11 40 0.64
123 Psychological, No Time 1.0e-10 0 24 0.67
126 Full, Time 1.0e-10 0 61 0.75
129 Full, Time 1.00 0.11 48 0.58
132 Psychological, Time 0.08 0.11 38 0.73
133 Full, No Time 1.00 0.11 33 0.40
135 Psychological, No Time 1.0e-10 0 25 0.50
14 Full, No Time 1.0e-10 0 35 0.83
146 Psychological, No Time 1.00 0 25 0.89
148 Full, No Time 1.0e-10 0 38 0.92
149 Full, No Time 1.0e-10 0 44 0.84
150 Full, No Time 1.00 0.22 39 0.60
152 Full, No Time 1.00 0 42 0.88
154 Full, No Time 1.00 0.33 38 0.88
155 Full, No Time 1.00 0.22 42 0.94
156 Situations, No Time 0.08 0 16 0.81
157 Full, No Time 1.00 0 42 0.62
158 Full, Time 1.00 0.11 55 0.87
159 Full, No Time 1.00 0.11 41 0.70
160 Full, No Time 1.00 0 40 0.72
162 Full, Time 1.00 0.33 44 0.62
164 Full, No Time 1.00 0.11 40 0.96
165 Situations, No Time 0.08 1.00 14 0.64
166 Full, No Time 1.00 0.22 30 0.67
167 Full, No Time 1.0e-10 0.44 28 0.55
168 Full, No Time 1.00 0.22 33 0.85
169 Psychological, No Time 0.08 0.78 23 0.88
17 Full, No Time 1.00 0.11 39 0.93
170 Full, No Time 1.00 0.11 36 0.85
171 Full, Time 1.00 0.22 46 0.54
174 Psychological, No Time 0.08 0.56 19 0.68
18 Psychological, No Time 1.00 0 25 0.84
180 Full, No Time 1.0e-10 0 36 0.64
181 Full, No Time 1.0e-10 0 35 0.91
184 Situations, Time 1.0e-10 0 28 0.75
185 Full, No Time 0.08 0.44 41 0.45
186 Full, Time 1.0e-10 0 55 0.60
188 Full, No Time 1.0e-10 0 44 0.92
189 Full, No Time 1.00 0.11 32 0.67
190 Situations, No Time 0.08 0.78 16 0.50
192 Situations, Time 1.0e-10 0 31 0.62
195 Psychological, No Time 1.00 0 25 0.71
196 Full, Time 1.0e-10 0 56 0.50
20 Full, Time 1.0e-10 0.11 48 0.71
206 Full, Time 1.0e-10 0 63 0.56
207 Full, No Time 1.0e-10 0 38 0.79
209 Psychological, No Time 1.00 0.11 24 0.93
21 Full, No Time 1.0e-10 0 42 0.93
211 Full, No Time 1.0e-10 0 43 0.96
212 Psychological, No Time 1.0e-10 0 25 0.95
214 Full, Time 1.0e-10 0 58 0.94
216 Full, No Time 1.00 0 33 0.93
22 Full, No Time 1.0e-10 0 45 0.93
220 Full, No Time 1.00 0.11 40 0.92
221 Full, No Time 0.08 0 39 0.95
23 Situations, No Time 1.00 0 12 0.93
25 Full, No Time 1.00 0.22 38 0.75
26 Psychological, No Time 1.00 0 25 0.94
27 Full, No Time 1.0e-10 0.33 33 0.67
28 Full, No Time 1.0e-10 0 37 0.93
30 Full, No Time 1.00 0.11 40 0.79
31 Psychological, Time 0.08 0.22 38 0.64
32 Full, No Time 1.0e-10 0 45 0.71
35 Full, No Time 0.08 0.22 28 0.92
36 Full, No Time 1.0e-10 0 40 0.92
38 Psychological, No Time 1.00 0.22 25 0.93
39 Full, No Time 1.00 0.22 34 0.93
40 Full, No Time 1.00 0.11 33 0.82
43 Situations, No Time 1.0e-10 0 17 0.64
49 Psychological, Time 1.0e-10 0.11 37 0.73
51 Psychological, No Time 1.00 0 25 0.92
52 Full, Time 1.00 0.11 45 0.91
53 Full, No Time 1.0e-10 0 41 0.93
58 Psychological, Time 1.0e-10 0 40 0.82
61 Psychological, Time 1.0e-10 0 41 0.73
63 Full, No Time 1.00 0.22 40 0.91
66 Full, No Time 1.00 0.22 38 0.91
67 Full, No Time 1.0e-10 0 42 0.93
71 Full, No Time 1.00 0.22 33 0.91
72 Full, No Time 1.00 0.11 36 0.93
73 Full, No Time 1.0e-10 0 44 0.93
74 Full, Time 1.0e-10 0 52 0.93
77 Full, No Time 1.0e-10 0 42 0.90
78 Full, No Time 1.0e-10 0 32 0.91
81 Psychological, Time 1.0e-10 0 39 0.82
82 Psychological, Time 1.0e-10 0 41 0.92
84 Full, No Time 1.0e-10 0 39 0.85
85 Full, No Time 1.0e-10 0 38 0.85
86 Full, No Time 1.0e-10 0 37 0.93
87 Full, Time 1.0e-10 0.67 32 0.55
6.1.4.1.4 Argument
(tmp %>% filter(outcome == "argument"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Argument Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
01 Full, No Time 1.0e-10 0 40 0.91
03 Psychological, No Time 1.0e-10 0 25 0.80
103 Full, No Time 1.0e-10 0 46 0.94
106 Full, No Time 1.0e-10 0 43 0.94
108 Situations, No Time 1.0e-10 0 16 0.90
118 Psychological, Time 1.0e-10 1.00 11 0.90
129 Full, No Time 1.0e-10 0 44 0.92
146 Psychological, No Time 6.0e-03 0 25 0.95
149 Full, Time 6.0e-03 1.00 19 0.78
157 Full, No Time 1.00 0 42 0.95
17 Full, No Time 1.0e-10 0 43 0.86
170 Psychological, No Time 0.08 0 25 0.95
185 Full, Time 1.0e-10 0 60 0.89
188 Full, No Time 1.0e-10 0 44 0.92
190 Psychological, No Time 0.08 0 25 0.93
206 Full, Time 1.0e-10 0 63 0.67
211 Psychological, No Time 1.00 0 25 0.96
212 Full, No Time 1.0e-10 0 46 0.95
22 Full, No Time 1.0e-10 0 45 0.93
220 Full, No Time 1.0e-10 0 41 0.75
25 Full, No Time 1.0e-10 0 44 0.92
38 Psychological, No Time 1.00 0 25 0.80
39 Full, No Time 1.0e-10 0 36 0.93
43 Full, No Time 1.0e-10 0 42 0.73
53 Full, No Time 1.0e-10 0 41 0.93
73 Full, No Time 1.0e-10 0.89 16 0.93
77 Full, No Time 1.0e-10 0 42 0.90
86 Full, No Time 1.0e-10 0 37 0.93
6.1.4.1.5 Tired
(tmp %>% filter(outcome == "tired"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Tired Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
01 Full, No Time 0.08 0.33 30 0.91
02 Situations, No Time 0.08 0 13 0.92
03 Psychological, No Time 1.0e-10 0.11 25 0.60
05 Psychological, No Time 0.08 0 25 0.92
08 Full, No Time 1.0e-10 0 40 0.75
09 Psychological, Time 1.0e-10 0 39 0.91
103 Full, No Time 1.0e-10 0 45 0.69
105 Situations, No Time 1.00 0 17 0.62
106 Situations, No Time 0.08 0.56 17 0.75
107 Full, No Time 0.08 0.89 29 0.80
108 Full, No Time 1.00 0 39 0.70
111 Full, No Time 1.0e-10 0 41 0.90
112 Full, No Time 1.00 0.22 34 0.77
113 Full, No Time 1.0e-10 0 38 0.90
118 Psychological, Time 1.0e-10 0 40 0.80
119 Psychological, No Time 1.0e-10 0.33 24 0.50
123 Full, Time 1.0e-10 0 57 0.93
124 Full, Time 1.0e-10 0 53 0.90
126 Full, No Time 1.0e-10 0 44 0.83
129 Full, No Time 1.0e-10 0 43 0.67
133 Full, No Time 1.00 0.22 24 0.90
135 Full, No Time 1.00 0.11 39 0.64
146 Full, No Time 1.0e-10 0.11 41 0.76
148 Situations, No Time 0.08 0 14 0.50
149 Full, No Time 0.08 0 44 0.63
150 Full, No Time 1.00 0 39 0.88
152 Full, No Time 1.00 0 42 0.72
154 Full, No Time 1.0e-10 0 39 0.88
155 Full, No Time 1.00 0 42 0.72
156 Full, No Time 0.08 1.00 27 0.86
157 Full, No Time 0.08 0.22 41 0.76
158 Situations, Time 0.08 0.56 29 0.73
159 Full, Time 1.0e-10 0 59 0.79
160 Full, No Time 1.0e-10 0 40 0.50
162 Full, No Time 1.0e-10 0 39 0.86
164 Full, Time 1.00 0 60 0.78
166 Full, No Time 1.0e-10 0 36 0.75
167 Full, No Time 1.00 0.22 36 0.82
168 Full, No Time 1.0e-10 0.67 33 0.85
169 Psychological, No Time 1.0e-10 0 25 0.94
17 Full, No Time 1.0e-10 0 43 0.64
170 Psychological, Time 1.00 0 41 0.78
171 Full, No Time 0.08 0 26 0.96
174 Full, No Time 1.0e-10 0 36 0.96
18 Full, No Time 1.0e-10 0 39 0.58
180 Full, No Time 1.0e-10 0 36 0.91
181 Full, No Time 1.0e-10 0 35 0.91
185 Full, No Time 1.00 0 42 0.80
186 Full, No Time 1.0e-10 0 39 0.93
187 Full, No Time 0.08 0 28 0.95
188 Full, No Time 1.0e-10 0 44 0.67
189 Full, No Time 1.0e-10 0 40 0.92
190 Full, No Time 1.0e-10 0 41 0.71
192 Full, Time 1.0e-10 0 56 0.69
195 Full, No Time 1.00 0.22 38 0.53
196 Full, No Time 1.0e-10 0 40 0.75
20 Full, No Time 1.00 0.22 34 0.43
206 Full, Time 1.0e-10 0 63 0.78
207 Full, Time 0.08 0.89 31 0.85
21 Full, No Time 1.00 0.11 40 0.33
211 Full, No Time 0.08 1.00 38 0.70
212 Psychological, No Time 1.00 0 25 0.81
214 Full, Time 1.0e-10 0 58 0.88
216 Full, No Time 1.0e-10 0 34 0.96
22 Full, No Time 1.0e-10 0 45 0.50
220 Psychological, Time 1.0e-10 0.44 34 0.73
221 Full, No Time 1.00 0 39 0.95
23 Full, No Time 1.0e-10 0 37 0.43
25 Full, No Time 1.00 0.11 41 0.17
26 Full, No Time 1.0e-10 0 41 0.94
27 Situations, Time 1.0e-10 0.11 36 0.64
30 Full, No Time 1.0e-10 0 41 0.93
31 Psychological, No Time 1.00 0.22 22 0.79
32 Full, Time 1.0e-10 0.11 53 0.79
35 Situations, No Time 1.00 0.11 17 0.75
36 Full, No Time 1.0e-10 0 40 0.92
38 Psychological, No Time 1.00 0.11 25 0.87
40 Full, No Time 1.0e-10 0 38 0.91
43 Full, No Time 1.0e-10 0 42 0.91
49 Psychological, Time 0.08 0.44 31 0.55
52 Full, No Time 1.0e-10 0 37 0.91
53 Full, No Time 1.0e-10 0 41 0.87
58 Psychological, No Time 0.08 0.89 19 0.91
63 Full, No Time 1.00 0.22 40 0.91
67 Full, No Time 1.00 0.22 39 0.93
71 Full, Time 1.0e-10 0 57 0.64
72 Full, No Time 1.0e-10 0 38 0.93
73 Full, No Time 1.0e-10 0 44 0.86
74 Full, Time 1.0e-10 0.11 46 0.93
77 Full, No Time 1.0e-10 0 40 0.90
81 Psychological, No Time 1.00 0 25 0.92
84 Full, Time 1.0e-10 0 56 0.92
86 Psychological, No Time 1.00 0 24 0.93
87 Full, No Time 1.00 0.22 35 0.27
6.1.4.1.6 Sick
(tmp %>% filter(outcome == "sick"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Sick Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
02 Full, No Time 1.0e-10 0 39 0.92
103 Psychological, No Time 1.0e-10 0.11 25 0.69
105 Psychological, No Time 1.0e-10 0 25 0.93
106 Full, No Time 1.0e-10 0 43 0.94
107 Situations, Time 1.0e-10 0.11 32 0.93
108 Full, No Time 1.0e-10 0 39 0.95
118 Psychological, Time 1.0e-10 0 40 0.90
126 Full, No Time 1.0e-10 0 44 0.92
129 Situations, Time 1.0e-10 0 34 0.92
135 Situations, No Time 6.0e-03 0.56 16 0.71
149 Full, No Time 1.00 0 44 0.79
152 Full, No Time 1.00 0 42 0.80
155 Full, No Time 1.00 0 42 0.78
157 Full, No Time 1.0e-10 0 44 0.95
158 Full, No Time 1.0e-10 0 38 0.93
159 Full, Time 1.0e-10 0 59 0.95
160 Full, No Time 1.0e-10 0 40 0.89
162 Full, No Time 1.0e-10 0 39 0.93
164 Full, No Time 1.0e-10 0 40 0.96
167 Full, No Time 1.0e-10 0 42 0.91
168 Full, Time 1.0e-10 0 55 0.77
170 Full, No Time 1.0e-10 0 40 0.77
18 Situations, No Time 1.00 0 14 0.84
180 Full, No Time 0.08 0.11 33 0.55
181 Full, No Time 1.0e-10 0 37 0.91
185 Full, No Time 1.00 0 42 0.90
190 Full, No Time 1.0e-10 0 41 0.71
192 Full, No Time 1.0e-10 0 40 0.77
196 Full, Time 1.0e-10 0 55 0.92
20 Full, No Time 0.08 0.11 34 0.93
201 Full, No Time 1.0e-10 0 43 0.91
206 Psychological, Time 4.6e-04 0.89 18 0.94
21 Full, Time 1.0e-10 0 58 0.87
211 Psychological, No Time 0.08 0 25 0.96
214 Full, No Time 1.0e-10 0 41 0.94
25 Full, No Time 1.0e-10 0 44 0.92
27 Full, No Time 0.08 0.44 40 0.67
31 Full, Time 1.0e-10 0 56 0.93
32 Full, No Time 1.0e-10 0.11 37 0.93
35 Full, No Time 1.00 0.33 32 0.92
38 Psychological, No Time 0.08 0 25 0.93
40 Full, No Time 1.0e-10 0 38 0.91
43 Full, No Time 1.0e-10 0.33 39 0.64
51 Full, No Time 1.0e-10 0.11 34 0.55
63 Full, No Time 1.0e-10 0 43 0.91
67 Full, No Time 1.0e-10 0 42 0.79
71 Psychological, No Time 0.08 0.89 20 0.82
77 Full, No Time 1.00 0.22 35 0.90
6.1.4.1.7 Interacted
(tmp %>% filter(outcome == "interacted"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Interacted Using Elastic Net
ID Group Penalty Mixture # Features Accuracy
01 Full, No Time 1.0e-10 0 39 0.73
02 Full, No Time 1.0e-10 0 38 0.69
03 Psychological, No Time 6.0e-03 1.00 18 0.50
09 Psychological, No Time 1.0e-10 0 25 0.45
103 Situations, No Time 0.08 0.56 19 0.56
105 Psychological, No Time 0.08 0 25 0.80
106 Full, Time 1.00 0.22 46 0.69
107 Psychological, Time 1.0e-10 0 42 0.67
108 Psychological, No Time 1.00 0.11 25 0.65
110 Full, No Time 0.08 0.33 32 0.83
111 Full, No Time 1.0e-10 0.11 32 0.90
112 Full, No Time 1.00 0.11 34 0.85
113 Full, Time 0.08 0.11 50 0.70
118 Psychological, Time 0.08 1.00 18 0.40
119 Full, No Time 1.00 0.22 40 0.36
123 Situations, Time 0.08 0 32 0.47
126 Full, No Time 1.00 0.22 39 0.83
129 Full, No Time 1.0e-10 0 43 0.83
132 Full, Time 1.0e-10 1.00 19 0.55
133 Full, No Time 1.0e-10 0 40 0.90
135 Full, Time 1.0e-10 0 57 0.93
14 Full, No Time 1.00 0.11 34 0.75
146 Psychological, No Time 1.00 0 25 0.47
148 Full, No Time 1.00 0.33 29 0.58
149 Situations, No Time 1.00 0 19 0.63
150 Situations, No Time 0.08 0.56 14 0.60
152 Situations, Time 0.08 0.33 35 0.62
154 Psychological, Time 1.0e-10 0 41 0.53
155 Situations, No Time 4.6e-04 0.11 17 0.78
156 Full, Time 1.00 0.22 54 0.76
157 Full, Time 1.0e-10 0 60 0.60
158 Psychological, No Time 1.00 0.11 24 0.93
159 Full, No Time 1.0e-10 0.11 40 0.65
160 Psychological, No Time 1.00 0 25 0.78
162 Situations, Time 1.0e-10 0 28 0.85
164 Full, Time 0.08 0.56 49 0.70
165 Psychological, No Time 1.0e-10 0 25 0.55
166 Full, Time 1.0e-10 0 56 0.58
167 Full, Time 1.00 0.11 47 0.82
168 Full, No Time 1.0e-10 0 40 0.77
169 Psychological, No Time 0.08 0 25 0.94
17 Situations, No Time 1.00 0 18 0.79
170 Full, No Time 1.0e-10 0 40 0.69
171 Situations, No Time 1.00 0.11 11 0.68
174 Psychological, Time 1.00 0 41 0.76
18 Full, Time 0.08 0.22 46 0.58
180 Psychological, Time 1.0e-10 0 42 0.82
181 Full, No Time 1.0e-10 0 37 0.91
184 Full, No Time 1.0e-10 0 37 0.92
185 Full, No Time 1.00 0.11 42 0.90
186 Psychological, No Time 1.00 0 24 0.93
187 Full, No Time 0.08 0.44 24 0.95
188 Full, No Time 1.00 0.33 38 0.58
189 Full, No Time 1.0e-10 0 40 0.67
190 Full, No Time 0.08 0.11 32 0.64
192 Full, Time 1.0e-10 0.11 47 0.69
195 Full, No Time 1.00 0 39 0.82
196 Full, No Time 1.0e-10 1.00 21 0.50
20 Full, No Time 1.0e-10 0 42 0.64
201 Psychological, No Time 1.0e-10 0 23 0.82
206 Full, Time 1.0e-10 0 63 0.83
207 Full, Time 1.0e-10 0 55 0.46
209 Full, No Time 1.00 0.33 34 0.83
21 Situations, No Time 0.08 0.11 17 0.73
211 Full, No Time 1.00 0.22 38 0.89
212 Full, Time 1.0e-10 0 64 0.80
214 Full, No Time 1.00 0.11 41 0.75
216 Full, No Time 1.00 0 33 0.74
22 Situations, Time 6.0e-03 0.44 32 0.50
220 Full, Time 1.0e-10 0.11 50 0.64
221 Full, No Time 1.00 0 39 0.75
23 Psychological, No Time 1.00 0 25 0.86
25 Full, No Time 1.0e-10 0 44 0.83
26 Situations, Time 4.6e-04 0.33 32 0.71
27 Full, No Time 6.0e-03 0.89 18 0.92
28 Full, No Time 0.08 0.67 32 0.50
30 Psychological, Time 0.08 0.33 32 0.46
31 Situations, Time 1.0e-10 0 33 0.93
32 Psychological, No Time 1.0e-10 0.22 25 0.57
33 Full, No Time 0.08 0.78 27 0.82
35 Full, No Time 1.00 0.44 31 0.58
36 Full, No Time 0.08 0.33 38 0.75
38 Full, No Time 0.08 0.89 33 0.79
39 Full, No Time 1.00 0.22 35 0.14
40 Situations, No Time 0.08 0.56 13 0.73
43 Full, No Time 1.0e-10 0 42 0.82
49 Psychological, No Time 0.08 0 24 0.55
51 Full, Time 1.0e-10 0.44 37 0.55
52 Situations, No Time 6.0e-03 1.00 12 0.64
53 Full, No Time 0.08 1.00 27 0.53
58 Psychological, No Time 0.08 0.67 22 0.55
61 Psychological, Time 0.08 0.67 26 0.82
63 Situations, No Time 1.00 0.11 18 0.82
66 Full, No Time 1.0e-10 0 43 0.91
67 Full, No Time 0.08 0.11 34 0.86
71 Full, No Time 1.00 0.22 33 0.27
72 Full, Time 1.0e-10 0.11 49 0.69
73 Full, Time 1.00 0.11 49 0.77
74 Situations, No Time 1.00 0 11 0.57
77 Psychological, No Time 1.0e-10 0.11 25 0.80
78 Psychological, No Time 1.0e-10 0.11 25 0.64
81 Psychological, Time 0.08 0.11 36 0.64
82 Situations, No Time 1.0e-10 0 9 0.67
84 Full, No Time 1.00 0.22 38 0.69
85 Full, Time 0.08 1.00 22 0.62
86 Situations, Time 1.0e-10 0.11 28 0.69
87 Full, No Time 1.0e-10 0 38 0.82

6.1.4.2 BISCWIT

The only turning parameter for BISCWIT was the number of items selected through rolling origin validation. As is clear in the table, relative to ENR, BISCWIT tended to select fewer features (e.g., Participant 01 had the full feature set with 22 features for BISCWIT but 49 features for ENR). Divergences in feature numbers are due to ties. As with ENR, the number of features did not appear to be related to the accuracy of the model and the was a wide range in which feature set produced the best model.

tmp <- tuning_param %>% 
  filter(model == "biscwit") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.1.4.2.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Lonely Using BISCWIT
ID Group # Items # Features Accuracy
03 Psychological, No Time 18 13 0.90
08 Situations, No Time 3 4 0.92
10 Psychological, No Time 3 4 0.91
103 Full, No Time 3 4 0.94
105 Full, Time 27 28 0.92
106 Full, No Time 15 16 0.94
108 Full, No Time 27 28 0.75
112 Full, No Time 3 4 0.69
118 Psychological, No Time 12 13 0.73
119 Full, No Time 3 4 0.93
123 Full, No Time 6 7 0.93
129 Full, No Time 3 4 0.58
133 Full, No Time 3 4 0.90
135 Full, Time 3 4 0.93
146 Full, No Time 30 23 0.94
149 Full, No Time 27 28 0.95
150 Full, No Time 3 4 0.96
152 Full, No Time 9 10 0.92
154 Full, No Time 3 4 0.94
155 Situations, No Time 3 4 0.67
157 Full, No Time 3 4 0.90
158 Psychological, No Time 6 7 0.93
160 Full, No Time 3 4 0.83
164 Full, No Time 3 4 0.96
168 Psychological, Time 15 16 0.77
170 Psychological, No Time 21 13 0.95
18 Full, Time 3 4 0.95
185 Situations, No Time 12 11 0.65
186 Full, No Time 3 4 0.93
196 Full, Time 18 19 0.92
20 Full, No Time 9 10 0.93
201 Full, No Time 3 4 0.82
206 Full, No Time 18 19 0.89
207 Psychological, Time 3 4 0.92
211 Situations, No Time 3 4 0.81
212 Full, No Time 3 4 0.95
214 Full, No Time 6 7 0.75
220 Full, No Time 3 4 0.92
25 Psychological, No Time 3 4 0.83
27 Full, No Time 3 4 0.83
32 Full, No Time 6 7 0.93
35 Full, No Time 21 23 0.75
36 Full, No Time 6 7 0.92
43 Full, No Time 12 14 0.73
51 Psychological, Time 3 4 0.92
53 Full, No Time 3 4 0.93
58 Psychological, No Time 3 4 0.91
63 Full, No Time 3 4 0.91
66 Full, Time 6 7 0.91
73 Full, No Time 12 13 0.93
84 Full, No Time 3 4 0.92
6.1.4.2.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Procrastinating Using BISCWIT
ID Group # Items # Features Accuracy
01 Full, No Time 3 5 0.91
02 Situations, No Time 15 11 0.85
03 Psychological, No Time 3 4 0.60
05 Psychological, No Time 3 4 0.92
09 Psychological, No Time 3 4 0.91
10 Psychological, No Time 3 4 0.73
103 Psychological, No Time 12 10 0.56
105 Full, No Time 21 22 0.92
106 Psychological, Time 6 7 0.81
107 Full, Time 6 7 0.93
108 Psychological, No Time 3 4 0.75
110 Full, No Time 3 4 0.83
111 Full, Time 24 25 0.80
112 Full, Time 3 4 0.69
118 Psychological, Time 18 19 0.60
119 Psychological, Time 21 22 0.64
123 Psychological, No Time 21 11 0.80
124 Situations, No Time 3 4 0.82
126 Situations, No Time 21 13 0.83
129 Full, Time 27 28 0.83
135 Full, No Time 12 13 0.93
146 Situations, Time 3 4 0.60
148 Full, No Time 3 4 0.67
149 Situations, Time 3 4 0.67
150 Situations, No Time 15 8 0.68
152 Full, No Time 15 16 0.88
155 Situations, No Time 3 4 0.67
156 Psychological, Time 6 7 0.57
157 Full, Time 42 30 0.95
158 Situations, No Time 15 13 0.73
159 Full, No Time 3 4 0.90
160 Full, No Time 24 19 0.89
162 Full, No Time 3 4 0.93
164 Full, No Time 12 13 0.96
165 Psychological, Time 24 25 0.82
166 Situations, Time 9 10 0.67
167 Psychological, No Time 3 4 0.64
168 Full, No Time 33 30 0.77
169 Psychological, No Time 3 4 0.94
17 Psychological, Time 21 18 0.62
170 Situations, Time 3 4 0.92
171 Full, No Time 3 4 0.96
174 Full, No Time 3 4 0.96
185 Full, No Time 12 13 0.95
186 Situations, No Time 3 4 0.87
188 Full, No Time 3 4 0.92
189 Psychological, No Time 9 10 0.83
190 Situations, No Time 12 13 0.86
192 Full, No Time 21 16 0.92
195 Full, No Time 15 16 0.94
196 Situations, No Time 6 7 0.92
20 Full, Time 45 38 0.86
206 Full, No Time 3 4 0.89
207 Full, No Time 3 4 0.86
21 Full, No Time 12 13 0.53
211 Full, No Time 3 4 0.96
212 Full, No Time 6 7 0.95
214 Psychological, Time 3 4 0.94
216 Full, No Time 12 13 0.81
22 Full, Time 9 10 0.83
220 Full, No Time 27 28 0.83
25 Full, No Time 24 25 0.83
26 Full, No Time 3 4 0.81
27 Full, Time 6 8 0.55
30 Full, No Time 15 16 0.86
31 Full, No Time 18 19 0.93
32 Psychological, No Time 6 7 0.86
33 Full, No Time 3 4 0.91
35 Psychological, No Time 6 7 0.83
38 Situations, No Time 15 14 0.64
40 Full, No Time 9 10 0.91
43 Situations, No Time 3 4 0.73
49 Psychological, No Time 9 10 0.64
51 Psychological, No Time 9 10 0.92
53 Full, No Time 15 16 0.93
61 Psychological, No Time 12 13 0.91
63 Full, No Time 15 16 0.91
66 Full, No Time 3 4 0.91
67 Full, Time 3 4 0.79
71 Full, No Time 3 4 0.73
73 Situations, No Time 12 13 0.93
74 Full, No Time 15 16 0.93
77 Psychological, No Time 9 10 0.80
78 Psychological, No Time 3 4 0.91
84 Full, No Time 3 4 0.92
86 Full, No Time 6 7 0.93
6.1.4.2.3 Studying
(tmp %>% filter(outcome == "study"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Studying Using BISCWIT
ID Group # Items # Features Accuracy
01 Full, No Time 3 4 0.91
02 Full, Time 9 10 0.67
03 Psychological, No Time 12 13 0.80
05 Full, No Time 24 25 0.67
08 Full, No Time 6 7 0.67
09 Psychological, No Time 15 12 0.91
10 Psychological, Time 6 7 0.73
103 Psychological, Time 12 14 0.56
105 Full, No Time 18 20 0.85
106 Situations, No Time 9 10 0.62
107 Full, No Time 18 19 0.53
108 Psychological, Time 15 14 0.70
110 Psychological, Time 21 22 0.83
111 Situations, Time 18 19 0.80
112 Psychological, No Time 9 9 0.77
113 Situations, No Time 6 7 0.90
118 Psychological, No Time 3 4 0.82
119 Psychological, No Time 9 10 0.57
123 Situations, No Time 3 4 0.80
124 Full, No Time 21 22 0.91
126 Situations, Time 6 7 0.92
129 Full, No Time 6 7 0.58
132 Full, No Time 6 7 0.45
133 Situations, No Time 15 11 0.40
135 Full, No Time 21 22 0.71
14 Psychological, No Time 12 13 0.83
146 Full, No Time 3 4 0.82
148 Psychological, No Time 3 4 0.92
149 Full, No Time 9 10 0.84
150 Full, No Time 6 7 0.64
152 Situations, No Time 6 7 0.92
154 Psychological, No Time 6 7 0.82
155 Psychological, No Time 9 10 0.83
156 Psychological, No Time 18 7 0.62
157 Situations, Time 33 24 0.70
158 Situations, Time 24 26 0.87
159 Situations, No Time 3 4 0.70
160 Psychological, No Time 9 10 0.72
162 Psychological, No Time 3 4 0.43
164 Full, No Time 24 25 0.83
165 Situations, No Time 18 16 0.64
166 Situations, No Time 9 11 0.75
167 Situations, Time 30 20 0.64
168 Full, No Time 6 7 0.77
169 Psychological, No Time 6 7 0.88
17 Full, No Time 3 4 0.86
170 Situations, No Time 9 10 0.85
171 Full, No Time 18 18 0.52
174 Situations, Time 6 8 0.80
18 Full, No Time 3 4 0.84
180 Full, No Time 3 4 0.73
181 Psychological, No Time 9 10 0.91
184 Full, No Time 6 7 0.69
185 Full, No Time 3 4 0.55
186 Full, No Time 21 20 0.60
187 Full, No Time 18 10 0.95
188 Full, Time 6 7 0.83
189 Full, No Time 3 4 0.83
190 Situations, No Time 12 14 0.64
192 Situations, Time 12 13 0.62
195 Psychological, No Time 9 10 0.65
196 Full, Time 9 10 0.50
20 Psychological, No Time 3 4 0.57
201 Full, No Time 12 13 0.45
206 Psychological, Time 6 7 0.56
207 Full, No Time 3 4 0.79
209 Psychological, No Time 21 13 0.93
21 Psychological, Time 21 22 0.87
211 Full, No Time 3 4 0.96
212 Full, Time 12 13 0.80
214 Psychological, Time 9 10 0.94
216 Full, No Time 15 14 0.93
22 Full, No Time 3 4 0.93
220 Psychological, No Time 9 10 0.92
221 Full, No Time 3 4 0.95
23 Psychological, No Time 21 17 0.93
25 Psychological, No Time 3 4 0.67
26 Full, No Time 6 7 0.88
27 Full, No Time 36 33 0.67
28 Full, No Time 9 10 0.93
30 Full, No Time 12 13 0.79
31 Psychological, No Time 3 4 0.71
32 Full, No Time 3 4 0.79
35 Full, No Time 33 34 0.92
36 Psychological, No Time 21 10 0.92
38 Situations, Time 3 4 0.82
39 Full, No Time 24 25 0.71
40 Psychological, Time 30 19 0.73
43 Full, No Time 15 16 0.55
49 Psychological, Time 9 10 0.73
51 Full, No Time 24 22 0.91
52 Full, No Time 6 7 0.73
53 Full, No Time 15 16 0.93
58 Psychological, Time 21 23 0.82
61 Psychological, No Time 9 10 0.64
63 Situations, No Time 6 7 0.91
66 Situations, No Time 15 11 0.73
67 Full, Time 27 28 0.93
71 Psychological, Time 15 16 0.91
72 Full, No Time 21 22 0.86
73 Full, No Time 36 34 0.93
74 Psychological, Time 15 16 0.93
77 Full, No Time 3 4 0.90
78 Psychological, No Time 6 7 0.91
81 Psychological, No Time 18 16 0.83
82 Full, Time 30 31 0.82
84 Full, No Time 3 4 0.92
85 Psychological, No Time 6 7 0.85
86 Full, No Time 3 4 0.93
87 Psychological, Time 9 10 0.55
6.1.4.2.4 Argument
(tmp %>% filter(outcome == "argument"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Argument Using BISCWIT
ID Group # Items # Features Accuracy
01 Full, No Time 6 9 0.91
03 Psychological, No Time 18 18 0.90
103 Full, No Time 33 25 0.94
106 Full, No Time 3 4 0.94
107 Full, No Time 6 7 0.93
108 Full, No Time 3 4 0.85
118 Psychological, No Time 3 4 0.91
129 Full, No Time 3 4 0.92
146 Psychological, No Time 12 11 0.95
148 Full, No Time 3 4 0.92
149 Psychological, No Time 6 7 0.74
157 Full, No Time 12 13 0.95
158 Full, No Time 15 16 0.93
159 Full, No Time 6 7 0.95
17 Full, No Time 21 22 0.86
170 Psychological, No Time 9 10 0.95
185 Full, Time 3 4 0.89
188 Full, No Time 3 4 0.92
190 Psychological, No Time 9 10 0.93
196 Full, No Time 3 4 0.83
206 Full, No Time 6 7 0.67
211 Full, No Time 21 18 0.96
212 Full, No Time 3 4 0.95
22 Psychological, No Time 15 15 0.93
220 Full, No Time 3 4 0.75
25 Full, No Time 15 16 0.92
38 Psychological, No Time 6 7 0.80
39 Full, No Time 6 7 0.93
43 Full, No Time 24 25 0.73
53 Full, No Time 3 4 0.93
66 Full, Time 6 7 0.91
73 Psychological, No Time 6 7 0.93
77 Full, No Time 12 13 0.90
86 Full, No Time 21 13 0.93
6.1.4.2.5 Tired
(tmp %>% filter(outcome == "tired"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Tired Using BISCWIT
ID Group # Items # Features Accuracy
01 Psychological, No Time 15 16 0.91
02 Full, Time 3 4 0.83
03 Psychological, No Time 12 13 0.70
05 Psychological, No Time 3 4 0.92
08 Full, No Time 3 4 0.83
09 Psychological, No Time 15 16 0.91
10 Psychological, No Time 12 13 0.73
103 Full, No Time 3 4 0.69
105 Situations, No Time 6 7 0.69
106 Full, Time 3 4 0.81
107 Full, Time 9 11 0.80
108 Full, No Time 6 7 0.70
111 Full, No Time 15 16 0.90
112 Full, Time 6 7 0.92
113 Full, No Time 9 10 0.90
118 Psychological, No Time 3 4 0.73
119 Full, Time 15 16 0.50
123 Psychological, No Time 9 10 0.87
124 Situations, Time 6 7 0.90
126 Full, Time 21 22 0.92
129 Situations, Time 18 20 0.92
133 Full, No Time 9 10 0.90
135 Situations, Time 27 18 0.71
146 Psychological, No Time 9 9 0.63
148 Situations, No Time 9 11 0.50
149 Psychological, No Time 6 7 0.58
150 Psychological, Time 24 14 0.88
152 Situations, Time 12 13 0.79
154 Psychological, No Time 18 9 0.82
155 Situations, No Time 15 9 0.67
156 Full, No Time 24 13 0.86
157 Situations, No Time 12 12 0.62
158 Situations, Time 15 16 0.73
159 Psychological, Time 3 4 0.79
160 Full, Time 18 19 0.44
162 Psychological, No Time 15 16 0.86
164 Situations, Time 12 13 0.78
165 Full, No Time 3 4 0.91
166 Situations, No Time 9 10 0.83
167 Full, Time 3 4 0.91
168 Full, Time 9 10 0.85
169 Psychological, No Time 18 10 0.94
17 Full, Time 6 8 0.69
170 Situations, No Time 6 7 0.77
171 Full, No Time 3 4 0.96
174 Full, No Time 3 4 0.96
18 Situations, No Time 15 14 0.63
180 Full, No Time 21 22 0.91
181 Full, No Time 30 27 0.91
185 Full, No Time 6 7 0.85
186 Full, No Time 18 19 0.93
187 Full, No Time 6 7 0.95
188 Psychological, Time 15 16 0.67
189 Full, No Time 6 7 0.92
190 Full, No Time 36 23 0.71
192 Psychological, No Time 12 13 0.69
195 Full, No Time 3 4 0.59
196 Full, No Time 6 7 0.67
20 Situations, No Time 12 12 0.50
201 Full, No Time 3 5 0.82
206 Full, No Time 3 4 0.78
207 Psychological, Time 12 13 0.62
21 Full, No Time 18 19 0.53
211 Full, No Time 15 16 0.59
212 Psychological, No Time 9 8 0.81
214 Full, Time 3 4 0.88
216 Full, No Time 3 4 0.96
22 Psychological, Time 3 4 0.50
220 Full, Time 3 4 0.64
221 Full, No Time 12 13 0.95
23 Full, No Time 12 14 0.43
25 Situations, No Time 3 4 0.50
26 Psychological, No Time 3 4 0.94
27 Situations, Time 3 4 0.64
30 Full, No Time 30 24 0.93
31 Psychological, No Time 9 11 0.79
32 Psychological, Time 24 25 0.64
35 Situations, No Time 12 13 0.58
36 Situations, No Time 15 12 0.92
38 Psychological, Time 21 19 0.82
40 Full, No Time 6 7 0.91
43 Psychological, No Time 6 7 0.91
49 Psychological, No Time 21 16 0.45
51 Psychological, No Time 12 13 0.83
52 Full, No Time 6 7 0.91
53 Full, No Time 24 25 0.87
58 Psychological, No Time 9 10 0.82
63 Psychological, No Time 9 10 0.73
67 Full, Time 9 10 0.93
71 Psychological, No Time 12 10 0.64
72 Full, No Time 18 19 0.93
73 Full, No Time 3 4 0.93
74 Full, No Time 6 7 0.93
77 Full, No Time 9 10 0.90
81 Psychological, Time 24 25 0.91
84 Full, No Time 9 10 0.92
86 Full, No Time 3 4 0.93
87 Situations, Time 15 17 0.45
6.1.4.2.6 Sick
(tmp %>% filter(outcome == "sick"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Sick Using BISCWIT
ID Group # Items # Features Accuracy
02 Full, No Time 15 16 0.92
03 Psychological, No Time 15 12 0.90
08 Full, No Time 21 22 0.92
10 Psychological, No Time 18 14 0.91
103 Psychological, Time 15 16 0.62
105 Psychological, No Time 18 19 0.93
106 Full, No Time 21 19 0.94
107 Psychological, No Time 18 11 0.53
108 Full, Time 3 4 0.95
118 Psychological, No Time 18 16 0.91
126 Full, No Time 3 4 0.92
129 Full, No Time 3 4 0.67
135 Full, No Time 36 21 0.71
149 Psychological, No Time 9 10 0.79
152 Full, No Time 12 13 0.80
155 Full, No Time 9 10 0.78
157 Full, No Time 3 4 0.95
158 Full, No Time 27 27 0.93
159 Full, Time 6 7 0.95
160 Full, No Time 30 25 0.89
162 Full, No Time 3 4 0.93
164 Full, No Time 12 13 0.96
167 Full, No Time 9 10 0.91
168 Full, Time 3 4 0.92
170 Full, Time 21 24 0.77
18 Situations, No Time 9 8 0.74
180 Situations, Time 12 13 0.73
181 Full, No Time 18 19 0.91
185 Psychological, No Time 6 7 0.90
189 Full, No Time 15 16 0.92
190 Psychological, No Time 6 7 0.80
192 Full, Time 21 23 0.85
196 Psychological, Time 6 7 0.92
20 Full, No Time 3 4 0.93
201 Full, No Time 18 19 0.91
206 Full, No Time 6 7 0.89
21 Psychological, No Time 3 4 0.93
211 Full, No Time 15 10 0.96
214 Full, No Time 21 22 0.94
22 Full, No Time 21 22 0.79
25 Full, No Time 12 13 0.83
27 Psychological, No Time 3 4 0.75
28 Full, No Time 12 13 0.93
31 Psychological, No Time 18 8 0.93
32 Full, No Time 12 13 0.93
35 Psychological, No Time 12 13 0.75
38 Psychological, No Time 9 10 0.93
40 Full, No Time 15 16 0.91
43 Full, No Time 12 13 0.55
51 Full, No Time 6 7 0.64
63 Full, No Time 6 7 0.91
67 Situations, No Time 6 7 0.86
71 Full, No Time 39 35 0.73
73 Full, No Time 3 4 0.93
77 Full, No Time 6 7 0.90
82 Psychological, No Time 3 4 0.92
6.1.4.2.7 Interacted
(tmp %>% filter(outcome == "interacted"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Interacted Using BISCWIT
ID Group # Items # Features Accuracy
01 Psychological, No Time 3 4 0.82
02 Full, No Time 6 7 0.77
03 Psychological, No Time 21 16 0.30
05 Psychological, Time 6 7 0.58
08 Psychological, No Time 6 7 0.67
09 Psychological, No Time 12 13 0.45
10 Psychological, Time 6 7 0.64
103 Situations, No Time 3 4 0.62
105 Psychological, No Time 6 7 0.80
106 Psychological, Time 15 16 0.62
107 Full, No Time 12 13 0.73
108 Situations, No Time 12 10 0.65
110 Psychological, No Time 21 17 0.92
111 Full, No Time 3 4 0.90
112 Full, No Time 30 23 0.77
113 Situations, No Time 6 7 0.60
118 Psychological, Time 3 4 0.50
119 Full, Time 6 7 0.71
123 Full, Time 3 4 0.47
124 Psychological, No Time 3 4 0.82
126 Psychological, No Time 21 12 0.75
129 Full, Time 6 7 0.92
132 Full, No Time 18 21 0.64
133 Full, No Time 6 7 0.90
135 Full, No Time 9 10 0.93
14 Psychological, No Time 15 14 0.67
146 Situations, No Time 6 7 0.65
148 Situations, No Time 12 14 0.67
149 Situations, Time 24 25 0.56
150 Situations, No Time 12 7 0.48
152 Psychological, Time 6 7 0.67
154 Full, Time 6 7 0.56
155 Situations, No Time 3 4 0.67
156 Full, No Time 3 4 0.71
157 Psychological, No Time 12 11 0.67
158 Psychological, No Time 3 4 0.67
159 Psychological, No Time 6 7 0.55
160 Psychological, Time 9 10 0.72
162 Situations, Time 6 8 0.77
164 Full, Time 3 4 0.74
165 Situations, No Time 12 11 0.55
166 Full, No Time 3 4 0.58
167 Full, No Time 12 13 0.82
168 Full, No Time 3 4 0.77
169 Psychological, No Time 9 10 0.94
17 Full, Time 15 16 0.77
170 Full, No Time 6 7 0.69
171 Psychological, No Time 3 4 0.52
174 Psychological, Time 30 24 0.76
18 Full, Time 6 7 0.63
180 Full, Time 48 39 0.73
181 Full, No Time 6 7 0.91
184 Full, No Time 21 29 0.77
185 Situations, Time 3 4 0.84
186 Psychological, No Time 9 10 0.80
187 Full, No Time 6 7 0.95
188 Psychological, No Time 9 10 0.67
189 Psychological, Time 12 13 0.75
190 Full, No Time 6 7 0.64
192 Full, No Time 15 17 0.69
195 Full, Time 12 13 0.69
196 Full, Time 24 25 0.58
20 Situations, Time 6 7 0.71
201 Psychological, No Time 6 7 0.82
206 Full, No Time 3 4 0.83
207 Full, No Time 18 19 0.50
209 Psychological, Time 3 4 0.79
21 Situations, No Time 12 7 0.67
211 Psychological, No Time 6 7 0.85
212 Full, No Time 3 4 0.81
214 Psychological, Time 9 10 0.81
216 Psychological, No Time 3 4 0.78
22 Situations, Time 3 4 0.67
220 Full, Time 9 10 0.64
221 Full, No Time 3 4 0.78
23 Full, No Time 3 4 0.86
25 Full, No Time 27 24 0.83
26 Full, Time 3 4 0.57
27 Full, No Time 3 4 0.92
28 Situations, No Time 6 11 0.57
30 Psychological, Time 3 4 0.62
31 Psychological, No Time 15 16 0.71
32 Psychological, No Time 9 10 0.57
33 Situations, No Time 9 14 0.82
35 Situations, No Time 9 10 0.75
36 Situations, Time 3 4 0.64
38 Full, Time 30 31 0.82
39 Situations, Time 21 22 0.57
40 Full, No Time 27 20 0.82
43 Situations, No Time 18 17 0.73
49 Psychological, No Time 6 7 0.64
51 Psychological, No Time 18 15 0.67
52 Full, No Time 18 20 0.64
53 Situations, No Time 12 12 0.47
58 Psychological, Time 15 16 0.64
61 Psychological, No Time 3 4 0.36
63 Situations, No Time 3 4 0.91
66 Full, No Time 6 7 0.91
67 Full, No Time 21 23 0.86
71 Full, Time 30 31 0.55
72 Full, No Time 3 4 0.50
73 Full, No Time 3 4 0.57
74 Situations, No Time 12 12 0.50
77 Psychological, No Time 6 7 0.80
78 Situations, No Time 3 5 0.64
81 Psychological, No Time 3 4 0.42
82 Situations, No Time 3 4 0.75
84 Psychological, No Time 3 4 0.69
85 Psychological, Time 24 25 0.31
86 Situations, Time 12 15 0.69
87 Psychological, No Time 3 4 0.82

6.1.4.3 Random Forest

Random forest used two tuning parameters, the number of features sampled from the feature set to train the model and the minimum sample size in each group needed for a binary split. The number of features sampled in each small tree tended to be smaller than the final number of features selected but varied widely across people. The minimum N for a split also varied quite widely. However, 10 was the most frequent number, which logically makes sense given the sample sizes in the present study. Because we used time delay embedding to preserve the “order” of the time series, the final number of features here tended to be larger than other methods (the number of possible features was doubled using an embedding dimension of 1). Each of these appeared to unrelated to accuracy.

tmp <- tuning_param %>% 
  filter(model == "rf") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.1.4.3.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Lonely Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
03 Psychological, No Time 8 35 0 0.90
08 Situations, No Time 26 19 30 0.91
10 Psychological, No Time 8 35 0 0.89
103 Situations, No Time 7 35 33 0.94
105 Full, No Time 14 35 0 0.83
106 Situations, No Time 26 19 26 0.94
108 Full, No Time 13 35 72 0.81
112 Full, No Time 13 35 0 0.75
118 Psychological, No Time 8 35 0 0.75
119 Full, No Time 15 35 31 0.93
123 Full, No Time 14 35 42 0.93
129 Full, No Time 14 35 0 0.64
133 Full, No Time 14 35 0 0.90
135 Situations, No Time 7 35 35 0.93
146 Full, No Time 13 35 57 0.94
149 Situations, No Time 7 35 26 0.95
150 Situations, No Time 31 22 30 0.96
152 Situations, No Time 6 35 30 0.92
154 Psychological, No Time 8 35 49 0.94
155 Full, No Time 49 31 80 0.71
157 Situations, No Time 7 35 24 0.90
158 Full, No Time 13 35 63 0.93
160 Full, No Time 13 35 44 0.83
164 Situations, No Time 6 35 24 0.96
168 Psychological, Time 13 15 66 0.75
170 Psychological, No Time 8 35 44 0.94
18 Situations, No Time 6 35 26 0.94
185 Situations, No Time 6 35 36 0.65
186 Situations, No Time 5 35 17 0.93
196 Situations, No Time 15 3 36 0.92
20 Situations, No Time 7 35 29 0.93
201 Full, No Time 13 35 0 0.80
206 Situations, No Time 8 35 39 0.88
207 Full, No Time 14 35 52 0.92
211 Full, No Time 12 35 67 0.83
212 Situations, No Time 8 35 33 0.95
214 Situations, No Time 6 35 28 0.80
220 Full, Time 16 35 0 0.91
25 Full, No Time 15 35 0 0.70
27 Full, Time 17 35 0 0.90
32 Situations, No Time 8 35 31 0.93
35 Full, No Time 14 35 0 0.91
36 Full, No Time 14 35 0 0.91
43 Full, No Time 14 35 0 0.80
51 Full, No Time 14 35 0 0.80
53 Full, No Time 13 35 34 0.93
58 Psychological, No Time 8 35 0 0.90
63 Full, No Time 15 35 0 0.91
66 Situations, No Time 7 35 0 0.91
73 Full, No Time 14 35 39 0.92
84 Situations, No Time 6 35 21 0.92
6.1.4.3.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Procrastinating Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
01 Psychological, No Time 8 35 0 0.91
02 Full, No Time 14 35 0 0.83
03 Psychological, No Time 8 35 0 0.90
05 Full, No Time 13 35 0 0.92
10 Psychological, No Time 8 35 0 0.67
103 Situations, No Time 7 35 41 0.62
105 Psychological, No Time 46 5 51 0.93
106 Full, No Time 3 6 87 0.87
107 Situations, No Time 5 35 27 0.93
108 Situations, No Time 5 35 28 0.58
110 Situations, No Time 2 6 33 0.92
111 Situations, No Time 8 35 0 0.90
112 Situations, No Time 6 35 28 0.69
118 Psychological, No Time 8 35 0 0.62
119 Full, No Time 86 5 77 0.57
123 Full, No Time 14 35 64 0.79
124 Full, No Time 3 6 82 0.50
126 Full, No Time 15 35 0 0.64
129 Situations, No Time 17 11 39 0.58
135 Situations, No Time 7 35 35 0.93
146 Psychological, No Time 8 35 48 0.58
148 Situations, No Time 7 35 0 0.55
149 Full, No Time 63 19 80 0.75
150 Situations, No Time 21 37 31 0.79
152 Situations, No Time 16 11 36 0.88
155 Full, No Time 61 19 77 0.53
156 Situations, Time 9 35 53 0.55
157 Full, No Time 14 35 73 0.95
158 Full, No Time 64 20 73 0.67
159 Situations, No Time 6 35 26 0.90
160 Full, No Time 13 35 61 0.89
162 Situations, No Time 6 35 22 0.93
164 Situations, No Time 6 35 24 0.96
165 Full, No Time 13 35 0 0.56
166 Full, Time 84 5 81 0.90
167 Full, No Time 82 5 75 0.70
168 Full, Time 73 19 93 0.67
169 Psychological, No Time 8 35 45 0.93
17 Psychological, Time 54 20 66 0.33
170 Situations, No Time 7 35 25 0.85
171 Situations, No Time 4 35 16 0.96
174 Situations, No Time 4 35 19 0.96
185 Situations, No Time 6 35 36 0.95
186 Situations, Time 42 22 23 0.79
188 Full, No Time 15 35 0 0.92
189 Situations, No Time 7 35 0 0.82
190 Psychological, No Time 8 35 51 0.93
192 Full, No Time 14 35 42 0.92
195 Situations, No Time 5 35 23 0.94
196 Situations, No Time 7 35 0 0.83
20 Situations, No Time 7 35 39 0.79
206 Full, No Time 15 35 52 0.94
207 Full, No Time 13 35 34 0.85
21 Psychological, No Time 22 11 51 0.64
211 Situations, Time 7 35 35 0.96
212 Situations, No Time 8 35 43 0.95
214 Situations, No Time 6 35 30 0.93
216 Full, No Time 12 35 58 0.83
22 Situations, Time 10 35 0 0.73
220 Full, No Time 14 35 0 0.91
25 Psychological, No Time 12 17 51 0.70
26 Full, No Time 14 35 76 0.87
27 Full, Time 48 11 97 0.90
30 Full, Time 16 35 49 0.92
31 Full, No Time 13 35 0 0.92
32 Full, No Time 15 35 61 0.92
33 Situations, No Time 4 35 0 0.91
35 Full, No Time 14 35 0 0.91
38 Psychological, No Time 8 35 44 0.69
40 Full, No Time 14 35 0 0.91
43 Full, No Time 14 35 0 0.90
49 Psychological, No Time 28 31 0 0.50
51 Psychological, No Time 8 35 0 0.91
53 Full, No Time 14 35 47 0.93
61 Psychological, No Time 8 35 0 0.91
63 Full, No Time 15 35 0 0.91
66 Situations, No Time 8 35 0 0.91
67 Full, No Time 14 35 54 0.69
71 Full, No Time 13 35 0 0.60
73 Full, No Time 14 35 63 0.85
74 Situations, No Time 6 35 20 0.92
77 Situations, No Time 7 35 0 0.90
78 Full, No Time 13 35 0 0.90
84 Situations, No Time 6 35 23 0.92
85 Full, No Time 13 35 20 0.83
86 Full, No Time 13 35 54 0.93
6.1.4.3.3 Studying
(tmp %>% filter(outcome == "study"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Studying Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
01 Psychological, No Time 8 35 0 0.91
02 Situations, Time 21 11 49 0.83
03 Psychological, No Time 8 35 0 0.80
05 Situations, No Time 12 11 28 0.75
08 Full, No Time 13 35 0 0.73
09 Psychological, No Time 8 35 0 0.90
10 Psychological, No Time 8 35 0 0.78
103 Situations, Time 21 32 45 0.50
105 Psychological, Time 24 3 68 0.93
106 Full, Time 70 19 91 0.67
107 Full, No Time 14 35 64 0.54
108 Full, No Time 12 35 70 0.56
110 Full, Time 40 11 78 0.89
111 Full, Time 92 5 89 0.67
112 Situations, No Time 5 35 23 0.77
113 Full, No Time 14 35 0 0.90
118 Psychological, No Time 8 35 0 0.75
119 Full, No Time 14 35 76 0.64
123 Full, No Time 14 35 68 0.71
124 Full, No Time 13 35 0 0.90
126 Situations, No Time 2 6 43 0.64
129 Full, Time 3 6 102 0.73
132 Situations, No Time 16 19 23 0.27
133 Full, No Time 13 35 0 0.40
135 Full, No Time 73 24 70 0.62
14 Situations, No Time 4 35 0 0.83
146 Psychological, No Time 8 35 49 0.89
148 Situations, No Time 27 19 28 0.91
149 Full, No Time 14 35 68 0.94
150 Full, No Time 6 39 75 0.59
152 Situations, No Time 6 35 35 0.88
154 Situations, Time 4 39 46 0.88
155 Situations, No Time 6 35 35 0.94
156 Situations, Time 4 39 52 0.70
157 Situations, No Time 6 35 36 0.62
158 Full, Time 3 6 96 0.86
159 Situations, No Time 3 39 35 0.70
160 Full, Time 23 17 88 0.76
162 Full, No Time 35 11 77 0.73
164 Situations, No Time 5 35 31 0.96
165 Situations, No Time 6 35 0 0.70
166 Full, No Time 12 35 0 0.90
167 Full, No Time 38 11 71 0.50
168 Full, No Time 14 35 55 0.85
17 Full, No Time 60 37 0 0.92
170 Psychological, No Time 36 19 51 0.82
171 Full, Time 64 22 62 0.64
174 Situations, Time 26 37 37 0.75
18 Situations, No Time 5 35 29 0.89
180 Full, No Time 12 35 0 0.70
181 Situations, No Time 6 35 0 0.90
184 Situations, No Time 5 35 0 0.67
185 Situations, Time 19 32 43 0.50
186 Situations, No Time 4 35 23 0.57
187 Situations, No Time 3 35 16 0.95
188 Full, No Time 14 35 0 0.92
189 Situations, No Time 7 35 0 0.73
190 Psychological, No Time 8 35 51 0.47
192 Full, No Time 14 35 62 0.54
195 Full, No Time 13 35 68 0.79
196 Situations, Time 9 35 0 0.50
20 Situations, Time 50 12 47 0.62
201 Situations, No Time 7 35 0 0.45
206 Situations, No Time 2 6 45 0.53
207 Full, No Time 13 35 36 0.77
209 Psychological, No Time 8 35 46 0.92
21 Full, No Time 14 35 72 0.93
211 Situations, No Time 5 35 14 0.96
212 Situations, No Time 16 32 41 0.95
214 Situations, No Time 6 35 31 0.93
216 Situations, No Time 5 35 25 0.93
22 Situations, No Time 8 35 38 0.92
220 Full, No Time 14 35 0 0.91
221 Situations, No Time 5 35 26 0.95
23 Situations, No Time 25 24 24 0.85
25 Situations, No Time 7 35 0 0.75
26 Situations, No Time 6 35 33 0.94
27 Psychological, No Time 46 5 51 0.73
28 Full, Time 16 35 70 0.92
30 Full, No Time 14 35 66 0.77
31 Situations, Time 8 35 46 0.77
32 Full, No Time 14 35 60 0.77
35 Full, No Time 14 35 0 0.82
36 Full, No Time 13 35 0 0.91
38 Situations, No Time 7 35 39 0.93
39 Situations, No Time 7 35 34 0.92
40 Psychological, No Time 10 15 51 0.73
43 Full, No Time 62 19 67 0.50
49 Psychological, Time 23 3 66 0.50
51 Psychological, No Time 8 35 0 0.91
52 Situations, No Time 2 6 30 0.91
53 Full, No Time 13 35 69 0.93
58 Psychological, Time 11 35 0 0.80
61 Psychological, No Time 8 35 0 0.73
63 Full, No Time 14 35 0 0.91
66 Full, No Time 15 35 0 0.88
67 Full, No Time 14 35 57 0.92
71 Full, No Time 13 35 0 0.90
72 Situations, No Time 8 17 29 0.92
73 Full, No Time 14 35 62 0.92
74 Situations, No Time 11 3 29 0.92
77 Situations, No Time 7 35 0 0.90
78 Full, No Time 13 35 0 0.90
81 Psychological, No Time 8 35 0 0.90
82 Psychological, Time 11 35 0 0.91
84 Situations, No Time 5 35 27 0.85
85 Full, No Time 13 35 53 0.83
86 Full, No Time 13 35 39 0.93
87 Full, No Time 13 35 0 0.45
6.1.4.3.4 Argument
(tmp %>% filter(outcome == "argument"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Argument Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
01 Psychological, No Time 8 35 0 0.91
03 Psychological, No Time 8 35 0 0.90
103 Situations, No Time 7 35 29 0.94
106 Situations, No Time 6 35 22 0.94
107 Situations, No Time 5 35 19 0.93
108 Situations, No Time 5 35 22 0.84
118 Psychological, No Time 8 35 0 0.88
129 Situations, No Time 6 35 0 0.92
146 Psychological, No Time 8 35 30 0.95
148 Situations, No Time 7 35 0 0.91
149 Full, No Time 14 35 65 0.75
157 Situations, No Time 6 35 36 0.95
158 Full, No Time 13 35 37 0.93
159 Situations, No Time 6 35 26 0.95
17 Full, No Time 14 35 46 0.85
170 Psychological, No Time 8 35 49 0.94
185 Full, Time 16 35 52 0.89
188 Full, No Time 15 35 0 0.92
190 Psychological, No Time 8 35 36 0.93
196 Situations, No Time 6 35 0 0.83
206 Full, No Time 15 35 77 0.69
211 Situations, No Time 5 35 24 0.96
212 Situations, No Time 7 35 31 0.95
22 Full, No Time 15 35 0 0.91
220 Full, No Time 14 35 0 0.82
25 Situations, No Time 7 35 0 0.92
38 Psychological, No Time 8 35 37 0.85
39 Situations, No Time 7 35 20 0.92
43 Full, No Time 14 35 0 0.70
53 Full, No Time 13 35 52 0.93
66 Situations, No Time 7 35 0 0.91
73 Full, No Time 14 35 60 0.92
77 Situations, No Time 7 35 0 0.90
86 Full, No Time 13 35 35 0.93
6.1.4.3.5 Tired
(tmp %>% filter(outcome == "tired"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Tired Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
01 Psychological, No Time 8 35 0 0.91
02 Situations, Time 40 20 45 0.75
03 Psychological, No Time 8 35 0 0.90
05 Full, No Time 13 35 0 0.92
08 Full, No Time 13 35 0 0.73
09 Psychological, No Time 8 35 0 0.90
10 Psychological, No Time 21 11 47 0.56
103 Full, No Time 14 35 75 0.64
105 Full, No Time 90 22 68 0.67
106 Situations, No Time 6 35 34 0.62
107 Situations, No Time 5 35 27 0.80
108 Full, No Time 18 17 70 0.69
111 Situations, No Time 7 35 0 0.90
112 Full, No Time 13 35 0 0.83
113 Full, No Time 14 35 0 0.90
118 Psychological, Time 11 35 0 0.75
119 Full, No Time 33 3 87 0.50
123 Full, No Time 14 35 71 0.93
124 Full, No Time 13 35 0 0.90
126 Full, No Time 15 35 0 0.82
129 Situations, No Time 6 35 0 0.67
133 Full, No Time 14 35 0 0.90
135 Full, No Time 34 32 62 0.69
146 Psychological, Time 5 39 65 0.71
148 Full, No Time 14 35 0 0.60
149 Situations, No Time 7 35 39 0.53
150 Situations, No Time 5 35 29 0.88
152 Situations, No Time 6 35 35 0.72
154 Situations, No Time 13 11 29 0.88
155 Full, No Time 3 6 85 0.76
156 Full, No Time 14 35 75 0.90
157 Situations, No Time 33 12 37 0.48
158 Situations, Time 48 22 45 0.71
159 Situations, Time 8 35 39 0.79
160 Full, No Time 81 22 54 0.50
162 Full, No Time 13 35 0 0.91
164 Full, Time 16 35 87 0.81
165 Situations, No Time 6 35 0 0.90
166 Situations, No Time 5 35 0 0.82
167 Situations, No Time 7 35 0 0.90
168 Situations, No Time 20 28 34 0.85
169 Psychological, Time 11 35 0 0.93
17 Full, No Time 14 35 61 0.62
170 Full, Time 46 11 81 0.75
171 Situations, No Time 4 35 19 0.96
174 Situations, Time 7 35 12 0.96
18 Full, No Time 78 22 70 0.75
180 Full, No Time 13 35 0 0.90
181 Situations, No Time 6 35 0 0.90
185 Situations, No Time 6 35 34 0.80
186 Situations, No Time 4 35 17 0.93
187 Situations, No Time 3 35 15 0.95
188 Full, No Time 3 6 90 0.67
189 Situations, No Time 7 35 0 0.91
190 Full, No Time 14 35 63 0.69
192 Full, Time 16 35 55 0.77
195 Full, No Time 53 26 64 0.64
196 Situations, No Time 23 31 28 0.75
20 Situations, No Time 35 12 34 0.50
201 Situations, No Time 7 35 0 0.82
206 Situations, No Time 8 35 41 0.76
207 Full, No Time 13 35 64 0.85
21 Situations, Time 4 39 52 0.57
211 Situations, Time 2 6 41 0.92
212 Situations, No Time 7 35 41 0.80
214 Situations, No Time 6 35 30 0.87
216 Situations, No Time 5 35 23 0.96
22 Situations, No Time 8 35 35 0.54
220 Full, Time 92 12 89 0.55
221 Situations, No Time 5 35 27 0.95
23 Psychological, No Time 49 22 41 0.50
25 Full, No Time 38 11 78 0.50
26 Situations, No Time 6 35 30 0.94
27 Situations, Time 15 17 61 0.80
30 Full, No Time 14 35 60 0.92
31 Full, No Time 13 35 57 0.77
32 Situations, No Time 7 35 41 0.57
35 Situations, No Time 2 6 40 0.64
36 Situations, Time 8 35 0 0.91
38 Full, Time 17 35 0 0.89
40 Full, No Time 14 35 0 0.91
43 Full, No Time 14 35 0 0.90
49 Psychological, No Time 8 35 0 0.60
51 Psychological, No Time 8 35 0 0.82
52 Situations, No Time 5 35 0 0.91
53 Full, No Time 13 35 69 0.93
58 Psychological, No Time 8 35 0 0.80
63 Full, No Time 64 19 73 0.91
67 Full, No Time 14 35 64 0.92
71 Full, No Time 13 35 0 0.70
72 Situations, No Time 6 35 18 0.92
73 Full, No Time 14 35 60 0.85
74 Situations, No Time 5 35 26 0.92
77 Situations, No Time 7 35 0 0.90
81 Psychological, No Time 8 35 0 0.90
84 Situations, Time 8 35 34 0.92
86 Full, No Time 13 35 64 0.93
87 Full, No Time 39 8 75 0.36
6.1.4.3.6 Sick
(tmp %>% filter(outcome == "sick"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Sick Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
02 Full, No Time 13 35 0 0.92
03 Psychological, No Time 8 35 0 0.90
08 Full, No Time 14 35 0 0.91
10 Psychological, No Time 43 5 36 0.89
103 Situations, No Time 39 22 14 0.62
105 Psychological, Time 11 35 0 0.93
106 Situations, No Time 6 35 28 0.94
107 Situations, Time 21 11 47 0.93
108 Situations, No Time 5 35 24 0.95
118 Psychological, Time 11 35 0 0.88
126 Full, No Time 74 20 63 0.91
129 Situations, No Time 6 35 0 0.67
135 Full, No Time 73 24 73 0.92
149 Full, No Time 14 35 71 0.81
152 Situations, No Time 6 35 35 0.80
155 Situations, No Time 6 35 35 0.78
157 Situations, No Time 7 35 15 0.95
158 Full, No Time 12 35 48 0.93
159 Situations, Time 8 35 42 0.95
160 Full, No Time 13 35 69 0.89
162 Situations, No Time 5 35 23 0.93
164 Situations, No Time 5 35 29 0.96
167 Situations, No Time 7 35 0 0.90
168 Full, Time 16 35 50 0.75
170 Situations, No Time 2 6 40 0.77
18 Psychological, No Time 36 19 50 0.88
180 Situations, Time 43 5 46 0.64
181 Situations, No Time 6 35 0 0.90
185 Situations, No Time 6 35 33 0.90
189 Situations, No Time 7 35 0 0.91
190 Psychological, No Time 8 35 47 0.80
192 Situations, No Time 9 17 28 0.85
196 Situations, No Time 7 35 0 0.92
20 Situations, No Time 6 35 33 0.93
201 Situations, No Time 7 35 0 0.91
206 Situations, No Time 8 35 34 0.94
21 Full, No Time 14 35 70 0.86
211 Situations, No Time 5 35 22 0.96
214 Situations, No Time 6 35 26 0.93
22 Situations, No Time 8 35 28 0.85
25 Situations, No Time 20 8 37 0.92
27 Situations, Time 26 11 61 0.70
28 Full, No Time 14 35 36 0.92
31 Full, No Time 13 35 58 0.92
32 Situations, No Time 7 35 31 0.93
35 Full, No Time 14 35 0 0.91
38 Situations, No Time 7 35 36 0.93
40 Full, No Time 14 35 0 0.91
43 Full, No Time 70 20 70 0.20
51 Psychological, No Time 12 17 51 0.55
63 Full, No Time 14 35 0 0.91
67 Situations, No Time 28 19 29 0.77
71 Full, No Time 13 35 0 0.70
73 Full, No Time 14 35 60 0.92
77 Situations, No Time 7 35 0 0.90
82 Psychological, No Time 8 35 0 0.92
6.1.4.3.7 Interacted
(tmp %>% filter(outcome == "interacted"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:tuning param)Table X
Tuning Parameters, Final Number of Non-Zero Features, and Classifications Accuracy for Each Participants’ Best Model of Interacted Using Random Forest
ID Group # Features Sampled Min N for Split # Features Accuracy
01 Psychological, No Time 8 35 0 0.82
02 Full, No Time 13 35 0 0.67
03 Psychological, No Time 2 6 51 0.30
05 Full, Time 3 6 93 0.73
08 Full, Time 35 3 89 0.64
09 Psychological, Time 11 35 0 0.22
10 Psychological, No Time 8 35 0 0.78
103 Situations, No Time 17 11 39 0.50
105 Psychological, No Time 8 35 48 0.79
106 Psychological, No Time 36 19 50 0.60
107 Full, No Time 30 3 82 0.54
108 Full, No Time 60 24 66 0.69
110 Situations, No Time 25 20 30 0.67
111 Situations, No Time 7 35 0 0.90
112 Situations, No Time 5 35 27 0.85
113 Situations, Time 2 6 54 0.70
118 Psychological, No Time 22 11 51 0.62
119 Situations, Time 46 24 36 0.71
123 Full, No Time 14 35 65 0.43
124 Full, Time 15 35 0 0.89
126 Full, No Time 15 35 0 0.82
129 Situations, No Time 6 35 0 0.83
132 Psychological, Time 58 12 59 0.56
133 Full, No Time 33 32 0 0.90
135 Situations, No Time 7 35 34 0.93
14 Situations, No Time 4 35 0 0.75
146 Psychological, No Time 8 35 49 0.47
148 Full, No Time 37 11 67 0.80
149 Situations, No Time 2 6 39 0.74
150 Situations, No Time 7 17 29 0.42
152 Psychological, Time 54 24 65 0.64
154 Psychological, No Time 4 39 51 0.56
155 Full, Time 3 6 101 0.53
156 Situations, Time 9 35 49 0.75
157 Situations, No Time 9 17 37 0.62
158 Full, Time 87 5 88 0.93
159 Full, No Time 13 35 81 0.74
160 Psychological, No Time 2 6 51 0.78
162 Situations, Time 32 37 0 0.50
164 Full, Time 90 5 98 0.81
165 Situations, No Time 6 35 0 0.50
166 Situations, Time 2 6 48 0.55
167 Full, No Time 14 35 0 0.80
168 Full, No Time 14 35 40 0.77
169 Psychological, No Time 8 35 48 0.87
17 Full, Time 16 35 0 0.83
170 Full, No Time 14 35 0 0.75
171 Full, No Time 27 28 47 0.73
174 Full, No Time 46 24 53 0.78
18 Situations, No Time 5 35 29 0.44
180 Situations, Time 2 6 48 0.82
181 Situations, No Time 6 35 0 0.90
184 Full, No Time 6 39 0 0.90
185 Full, No Time 13 35 74 0.89
186 Full, No Time 12 35 64 0.92
187 Situations, No Time 3 35 15 0.95
188 Situations, No Time 32 24 39 0.67
189 Situations, No Time 7 35 0 0.64
190 Full, No Time 14 35 62 0.62
192 Situations, Time 12 17 51 0.69
195 Situations, No Time 5 35 29 0.81
196 Full, No Time 80 5 79 0.18
20 Situations, No Time 7 35 32 0.64
201 Full, No Time 13 35 0 0.60
206 Full, No Time 15 35 76 0.88
207 Situations, No Time 28 20 27 0.54
209 Full, No Time 3 6 75 0.91
21 Full, Time 3 6 102 0.57
211 Situations, No Time 5 35 25 0.88
212 Situations, No Time 2 6 43 0.75
214 Full, No Time 13 35 0 0.75
216 Full, No Time 11 35 68 0.75
22 Situations, Time 61 22 49 0.73
220 Full, Time 49 8 89 0.64
221 Full, No Time 6 39 78 0.76
23 Situations, No Time 5 35 29 0.92
25 Full, No Time 14 35 0 0.90
26 Situations, Time 36 37 30 0.57
27 Situations, No Time 7 35 0 0.92
28 Situations, Time 42 20 44 0.69
30 Full, No Time 49 28 73 0.54
31 Situations, No Time 6 35 34 0.92
32 Full, No Time 73 24 77 0.62
33 Full, No Time 11 35 0 0.89
35 Full, No Time 13 35 0 0.64
36 Situations, No Time 7 15 33 0.64
38 Situations, No Time 15 3 43 0.57
39 Full, No Time 29 3 74 0.33
40 Situations, No Time 33 12 37 0.73
43 Full, No Time 62 19 64 0.80
49 Psychological, No Time 12 17 48 0.90
51 Full, Time 3 6 99 0.70
52 Full, No Time 13 35 0 0.89
53 Psychological, No Time 22 11 51 0.53
58 Psychological, No Time 35 19 46 0.20
61 Psychological, No Time 18 3 51 0.73
63 Full, No Time 14 35 0 0.82
66 Situations, No Time 7 35 0 0.91
67 Situations, No Time 7 35 32 0.77
71 Situations, Time 21 11 47 0.50
72 Situations, No Time 2 6 29 0.77
73 Full, No Time 14 35 72 0.62
74 Situations, Time 36 24 41 0.77
77 Full, No Time 13 35 0 0.62
78 Full, No Time 54 37 0 0.70
81 Psychological, No Time 19 32 0 0.80
82 Full, No Time 13 35 0 0.55
84 Situations, No Time 2 6 33 0.69
85 Full, Time 35 3 98 0.67
86 Situations, Time 35 19 42 0.54
87 Full, No Time 13 35 0 0.82

6.2 Question 2: Are there individual differences in the idiographic range of prediction across people?

Next, rather than grouping performance information by the feature sets, we’ll group the feature sets by participant, demonstrating the mean, standard deviation, median, and range for each person to answer the range of prediction across people.

In the manuscript, we include a subset of this as a figure of a sample of 25 participants for each outcome. But below, we’ll create tables for each outcome, where each participant is a row to describe their results.

6.2.1 The Range of Prediction

6.2.1.1 Table

px_sum_tab <- function(d, outcome){
  # clean up the outcome names
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  # create the caption
  cap <- sprintf("<strong>Table SX</strong><br><em>Descriptive Statistics of Model Performance for Each Participant for %s", outcome)
  # create the span headers for the table
  h1 <- c(1, rep(2, 6)); names(h1) <- c(" ", rep(c("Accuracy", "AUC"), times = 3))
  h2 <- c(1, rep(4, 3)); names(h2) <- c(" ", "Elastic Net", "BISCWIT", "Random Forest")
  # call the kable table
  tab <- d %>%
    kable(.
          , "html"
          , col.names = c("ID", rep(c("M (SD)", "Range"), times = 6))
          , align = c("r", rep("c", 12))
          , caption = cap
          ) %>%
    kable_styling(full_width = F) %>%
    add_header_above(h1) %>%
    add_header_above(h2) 
  save_kable(tab, file = sprintf("%s/05-results/04-tables/04-participant-sum/%s.html", local_path, outcome))
  return(tab)
}

# indexing the preferred column order
ord <- paste(rep(c("glmnet", "biscwit", "rf"), each = 6)
             , rep(c("accuracy", "roc_auc"), each = 3, times = 3)
             , rep(c("mean", "median", "range"), times = 6)
             , sep = "_")

px_tabs <- sum_res %>% 
  unnest(data) %>%
  group_by(SID, outcome, model, .metric) %>%
  # summaries for each participant, outcome, model, and metric combinations
  summarize_at(vars(.estimate), lst(mean, median, sd, min, max), na.rm = T) %>%
  ungroup() %>%
  mutate(sd = ifelse(sd < .01, "<.01", sprintf("%.2f", sd)),
         mean = sprintf("%.2f (%s)", mean, sd),
         range = sprintf("%.2f-%.2f", min, max),
         median = sprintf("%.2f", median)) %>%
  select(-sd, -min, -max) %>%
  pivot_wider(names_from = c("model", ".metric")
              , values_from = c("mean", "median", "range")
              , names_glue = "{model}_{.metric}_{.value}") %>%
  select(SID, outcome, ord) %>% 
  select(-contains("median")) %>%
  group_by(outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(tab = map2(data, outcome, px_sum_tab))

From the tables below, a few things become clear. First, for both accuracy and AUC, some individuals are very consistent in how accurately we can predict future procrastination or loneliness, regardless of what feature set is used (albeit low or high accuracy). Others, however, show a wide range, with a few participants even showing the full 0 - 1 range (e.g., Participant 135 for procrastination, 154 for loneliness) that is possible for classification accuracy and AUC.

tmp <- px_tabs %>% 
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.2.1.1.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for lonely
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
03 0.89 (0.04) 0.80-0.91 0.49 (0.28) 0.20-0.89 0.90 (<.01) 0.90-0.91 0.59 (0.19) 0.30-0.78 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
08 0.54 (0.19) 0.25-0.83 0.56 (0.23) 0.20-1.00 0.70 (0.15) 0.42-0.92 0.48 (0.13) 0.30-0.75 0.72 (0.22) 0.17-0.91 0.53 (0.15) 0.22-0.83
10 0.88 (0.06) 0.75-0.92 0.56 (0.16) 0.40-0.80 0.91 (<.01) 0.91-0.92 0.40 (0.30) 0.00-0.73 0.90 (<.01) 0.89-0.92 0.50 (<.01) 0.50-0.50
103 0.91 (0.07) 0.75-1.00 0.76 (0.24) 0.20-1.00 0.89 (0.04) 0.81-0.94 0.25 (0.20) 0.07-0.70 0.93 (<.01) 0.93-0.94 0.62 (0.32) 0.00-0.87
105 0.66 (0.18) 0.38-0.85 0.48 (0.11) 0.31-0.68 0.84 (0.04) 0.80-0.92 0.41 (0.13) 0.23-0.60 0.81 (0.03) 0.71-0.83 0.41 (0.07) 0.27-0.50
106 0.94 (<.01) 0.94-0.94 0.22 (0.20) 0.00-0.73 0.93 (0.02) 0.88-0.94 0.85 (0.17) 0.50-1.00 0.93 (0.02) 0.88-0.94 0.57 (0.20) 0.21-0.93
108 0.74 (0.09) 0.55-0.80 0.44 (0.17) 0.05-0.73 0.71 (0.07) 0.60-0.80 0.58 (0.21) 0.23-0.95 0.77 (0.08) 0.58-0.81 0.31 (0.09) 0.20-0.47
11 0.86 (0.06) 0.80-0.91 0.68 (0.32) 0.22-0.90 0.90 (<.01) 0.90-0.91 0.43 (0.38) 0.10-0.85 0.92 (0.05) 0.89-1.00 0.50 (<.01) 0.50-0.50
112 0.69 (0.03) 0.62-0.77 0.75 (0.13) 0.47-0.89 0.70 (0.02) 0.69-0.77 0.23 (0.05) 0.11-0.32 0.70 (0.03) 0.67-0.75 0.56 (0.09) 0.39-0.69
118 0.70 (0.06) 0.64-0.80 0.70 (0.20) 0.44-0.94 0.78 (0.14) 0.60-1.00 0.27 (0.23) 0.00-0.58 0.67 (0.18) 0.40-0.91 0.48 (0.27) 0.00-1.00
119 0.93 (<.01) 0.93-0.93 0.66 (0.27) 0.23-1.00 0.93 (<.01) 0.93-0.93 0.38 (0.29) 0.00-1.00 0.93 (<.01) 0.93-0.93 0.57 (0.35) 0.08-1.00
121 0.90 (0.04) 0.83-0.92 0.70 (0.19) 0.55-0.91 0.92 (<.01) 0.92-0.92 0.35 (0.24) 0.14-0.64 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
123 0.92 (0.04) 0.80-0.93 0.30 (0.24) 0.00-0.79 0.93 (0.02) 0.87-0.93 0.52 (0.28) 0.00-0.93 0.93 (<.01) 0.93-0.93 0.65 (0.30) 0.08-0.93
129 0.56 (0.06) 0.42-0.67 0.28 (0.20) 0.00-0.60 0.56 (0.05) 0.42-0.58 0.84 (0.17) 0.46-1.00 0.61 (0.03) 0.58-0.64 0.50 (<.01) 0.50-0.50
133 0.90 (<.01) 0.90-0.90 0.63 (0.45) 0.00-1.00 0.90 (<.01) 0.90-0.90 0.46 (0.42) 0.00-1.00 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
135 0.89 (0.07) 0.71-0.93 0.43 (0.28) 0.08-0.85 0.92 (0.03) 0.86-0.93 0.61 (0.31) 0.08-1.00 0.93 (0.02) 0.92-1.00 0.46 (0.27) 0.00-0.83
146 0.92 (0.02) 0.89-0.94 0.61 (0.25) 0.06-1.00 0.91 (0.02) 0.87-0.94 0.49 (0.21) 0.00-0.84 0.91 (0.02) 0.88-0.94 0.51 (0.27) 0.06-0.93
149 0.94 (0.02) 0.89-0.95 0.44 (0.28) 0.11-0.94 0.95 (<.01) 0.94-0.95 0.52 (0.26) 0.12-1.00 0.94 (<.01) 0.93-0.95 0.34 (0.31) 0.00-0.76
15 0.77 (0.09) 0.73-0.91 0.93 (0.08) 0.83-1.00 0.80 (0.09) 0.73-0.91 0.07 (0.07) 0.00-0.17 0.70 (0.20) 0.40-0.80 0.89 (0.13) 0.75-1.00
150 0.95 (0.01) 0.92-0.96 0.44 (0.22) 0.00-0.71 0.96 (<.01) 0.96-0.96 0.57 (0.21) 0.17-0.96 0.95 (0.01) 0.92-0.96 0.21 (0.14) 0.05-0.52
152 0.90 (0.03) 0.84-0.92 0.43 (0.12) 0.22-0.61 0.92 (<.01) 0.92-0.92 0.54 (0.14) 0.37-0.79 0.92 (<.01) 0.91-0.92 0.50 (0.22) 0.20-0.89
154 0.89 (0.07) 0.65-0.94 0.50 (0.25) 0.20-1.00 0.92 (0.03) 0.88-0.94 0.58 (0.33) 0.06-1.00 0.94 (<.01) 0.93-0.94 0.37 (0.22) 0.07-0.94
155 0.58 (0.14) 0.33-0.83 0.57 (0.21) 0.18-0.82 0.57 (0.08) 0.39-0.72 0.50 (0.15) 0.23-0.77 0.63 (0.06) 0.59-0.78 0.64 (0.14) 0.46-0.97
157 0.90 (<.01) 0.90-0.90 0.56 (0.25) 0.25-1.00 0.90 (<.01) 0.90-0.90 0.55 (0.20) 0.08-0.86 0.90 (<.01) 0.89-0.90 0.64 (0.17) 0.38-0.92
158 0.91 (0.06) 0.73-0.93 0.48 (0.29) 0.00-0.93 0.89 (0.06) 0.80-0.93 0.56 (0.29) 0.07-1.00 0.93 (0.02) 0.87-0.93 0.68 (0.24) 0.00-0.93
160 0.83 (<.01) 0.83-0.83 0.39 (0.17) 0.11-0.69 0.83 (<.01) 0.83-0.83 0.74 (0.14) 0.40-0.93 0.83 (<.01) 0.82-0.83 0.69 (0.08) 0.50-0.82
164 0.96 (<.01) 0.96-0.96 0.40 (0.29) 0.14-1.00 0.96 (<.01) 0.96-0.96 0.50 (0.26) 0.09-0.86 0.95 (<.01) 0.95-0.96 0.40 (0.28) 0.05-1.00
168 0.59 (0.09) 0.38-0.69 0.57 (0.10) 0.42-0.73 0.66 (0.16) 0.38-0.92 0.36 (0.14) 0.20-0.60 0.61 (0.11) 0.42-0.83 0.71 (0.10) 0.50-0.82
170 0.91 (0.04) 0.84-0.95 0.57 (0.16) 0.24-0.79 0.91 (0.03) 0.85-0.95 0.46 (0.15) 0.12-0.67 0.94 (0.04) 0.89-1.00 0.34 (0.27) 0.00-0.75
18 0.92 (0.04) 0.84-0.95 0.47 (0.35) 0.00-0.94 0.93 (0.03) 0.89-0.95 0.64 (0.27) 0.25-1.00 0.95 (0.02) 0.94-1.00 0.40 (0.30) 0.00-1.00
185 0.65 (0.02) 0.63-0.68 0.65 (0.09) 0.45-0.77 0.60 (0.05) 0.53-0.65 0.40 (0.09) 0.23-0.53 0.63 (0.02) 0.61-0.65 0.52 (0.10) 0.39-0.71
186 0.92 (0.03) 0.87-0.93 0.62 (0.19) 0.36-0.93 0.92 (0.02) 0.87-0.93 0.50 (0.18) 0.14-0.79 0.93 (<.01) 0.92-0.93 0.48 (0.18) 0.00-0.75
196 0.92 (0.02) 0.92-1.00 0.88 (0.17) 0.41-1.00 0.90 (0.07) 0.75-1.00 0.16 (0.16) 0.00-0.55 0.91 (0.02) 0.83-0.92 0.46 (0.10) 0.18-0.55
20 0.92 (0.02) 0.86-0.93 0.59 (0.30) 0.08-0.92 0.93 (<.01) 0.93-0.93 0.28 (0.23) 0.00-0.69 0.92 (<.01) 0.91-0.93 0.56 (0.24) 0.17-1.00
201 0.70 (0.11) 0.55-0.82 0.58 (0.09) 0.47-0.69 0.65 (0.12) 0.55-0.82 0.43 (0.13) 0.25-0.61 0.67 (0.20) 0.27-0.82 0.47 (0.15) 0.17-0.67
206 0.87 (0.04) 0.78-0.89 0.51 (0.25) 0.03-0.84 0.89 (<.01) 0.89-0.89 0.43 (0.15) 0.19-0.75 0.88 (<.01) 0.88-0.88 0.68 (0.23) 0.27-0.93
207 0.77 (0.18) 0.38-0.92 0.38 (0.16) 0.17-0.67 0.81 (0.08) 0.69-0.92 0.77 (0.23) 0.17-1.00 0.84 (0.23) 0.08-0.92 0.47 (0.23) 0.00-0.83
211 0.80 (0.05) 0.62-0.81 0.56 (0.07) 0.43-0.71 0.78 (0.03) 0.73-0.81 0.43 (0.05) 0.32-0.57 0.81 (0.04) 0.69-0.85 0.56 (0.09) 0.43-0.71
212 0.95 (<.01) 0.95-0.95 0.49 (0.23) 0.05-0.90 0.95 (<.01) 0.95-0.95 0.48 (0.25) 0.10-0.84 0.95 (<.01) 0.95-0.95 0.32 (0.19) 0.05-0.61
214 0.75 (<.01) 0.75-0.75 0.39 (0.12) 0.27-0.66 0.75 (0.02) 0.75-0.81 0.51 (0.17) 0.19-0.73 0.77 (0.03) 0.73-0.80 0.40 (0.16) 0.12-0.67
220 0.88 (0.06) 0.73-0.92 0.51 (0.30) 0.00-1.00 0.89 (0.04) 0.82-0.92 0.52 (0.32) 0.00-1.00 0.92 (0.02) 0.91-1.00 0.50 (<.01) 0.50-0.50
25 0.75 (<.01) 0.75-0.75 0.61 (0.18) 0.33-0.87 0.80 (0.04) 0.75-0.83 0.35 (0.13) 0.19-0.48 0.70 (0.03) 0.67-0.75 0.49 (0.04) 0.39-0.52
27 0.78 (0.07) 0.64-0.83 0.67 (0.16) 0.42-0.89 0.79 (0.08) 0.67-1.00 0.35 (0.27) 0.00-0.78 0.86 (0.04) 0.82-0.90 0.50 (<.01) 0.50-0.50
32 0.77 (0.19) 0.36-0.93 0.54 (0.32) 0.00-1.00 0.91 (0.04) 0.79-0.93 0.47 (0.33) 0.00-1.00 0.89 (0.04) 0.85-0.93 0.58 (0.24) 0.17-0.92
35 0.81 (0.04) 0.75-0.83 0.14 (0.13) 0.00-0.35 0.77 (0.04) 0.75-0.83 0.81 (0.16) 0.60-1.00 0.89 (0.06) 0.75-0.91 0.47 (0.08) 0.30-0.50
36 0.81 (0.12) 0.64-0.92 0.46 (0.30) 0.00-0.90 0.90 (0.03) 0.82-0.92 0.56 (0.30) 0.09-1.00 0.93 (0.04) 0.90-1.00 0.50 (<.01) 0.50-0.50
43 0.81 (0.03) 0.73-0.82 0.25 (0.27) 0.00-0.67 0.70 (0.10) 0.55-0.82 0.75 (0.24) 0.28-1.00 0.80 (<.01) 0.80-0.80 0.50 (<.01) 0.50-0.50
51 0.70 (0.10) 0.45-0.83 0.61 (0.18) 0.29-0.89 0.66 (0.11) 0.45-0.92 0.43 (0.22) 0.00-0.81 0.73 (0.08) 0.55-0.80 0.47 (0.15) 0.12-0.74
53 0.93 (<.01) 0.93-0.93 0.48 (0.40) 0.07-1.00 0.93 (<.01) 0.93-0.93 0.46 (0.33) 0.00-0.96 0.92 (0.03) 0.87-0.93 0.78 (0.24) 0.36-1.00
58 0.92 (<.01) 0.91-0.92 0.45 (0.19) 0.20-0.60 0.92 (0.03) 0.91-1.00 0.46 (0.25) 0.00-0.77 0.92 (0.03) 0.90-1.00 0.57 (0.19) 0.50-1.00
63 0.91 (<.01) 0.91-0.91 0.72 (0.28) 0.10-1.00 0.90 (0.03) 0.82-0.91 0.37 (0.32) 0.00-1.00 0.95 (0.05) 0.91-1.00 0.50 (<.01) 0.50-0.50
66 0.90 (0.03) 0.82-0.91 0.51 (0.28) 0.00-1.00 0.95 (0.05) 0.91-1.00 0.50 (<.01) 0.50-0.50
67 0.86 (<.01) 0.86-0.86 0.80 (0.20) 0.50-1.00 0.86 (0.02) 0.86-0.93 0.35 (0.32) 0.00-0.83
68 0.91 (<.01) 0.91-0.91 0.55 (0.34) 0.20-1.00 0.91 (<.01) 0.91-0.91 0.56 (0.12) 0.40-0.70 0.93 (0.05) 0.90-1.00 0.50 (<.01) 0.50-0.50
73 0.93 (<.01) 0.92-0.93 0.89 (0.18) 0.38-1.00 0.93 (<.01) 0.92-0.93 0.32 (0.26) 0.00-0.85 0.92 (<.01) 0.92-0.92 0.95 (0.09) 0.75-1.00
84 0.92 (0.02) 0.85-0.92 0.28 (0.15) 0.04-0.58 0.92 (0.02) 0.85-0.92 0.65 (0.31) 0.08-1.00 0.92 (<.01) 0.91-0.92 0.32 (0.26) 0.00-0.75
88 0.90 (<.01) 0.90-0.90 0.42 (0.33) 0.00-0.78 0.90 (<.01) 0.90-0.90 0.64 (0.29) 0.33-0.89 0.89 (0.01) 0.88-0.90 0.50 (<.01) 0.50-0.50
6.2.1.1.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for prcrst
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
01 0.91 (<.01) 0.91-0.92 0.47 (0.31) 0.00-1.00 0.90 (0.03) 0.83-0.92 0.64 (0.24) 0.27-0.95 0.95 (0.05) 0.91-1.00 0.50 (<.01) 0.50-0.50
02 0.81 (0.08) 0.54-0.85 0.39 (0.19) 0.14-0.77 0.76 (0.09) 0.58-0.85 0.66 (0.25) 0.18-0.95 0.83 (<.01) 0.83-0.85 0.49 (0.05) 0.35-0.55
03 0.68 (0.25) 0.36-0.91 0.55 (0.20) 0.33-0.90 0.71 (0.13) 0.55-0.90 0.57 (0.26) 0.20-0.90 0.92 (0.04) 0.90-1.00 0.58 (0.20) 0.50-1.00
05 0.92 (<.01) 0.92-0.92 0.56 (0.31) 0.08-1.00 0.91 (0.03) 0.83-0.92 0.41 (0.35) 0.00-1.00 0.93 (0.03) 0.91-1.00 0.52 (0.07) 0.50-0.73
09 0.91 (<.01) 0.91-0.92 0.69 (0.29) 0.20-1.00 0.91 (<.01) 0.91-0.92 0.43 (0.23) 0.18-0.80 0.91 (<.01) 0.91-0.91 0.50 (<.01) 0.50-0.50
10 0.74 (0.01) 0.73-0.75 0.39 (0.05) 0.33-0.44 0.74 (0.01) 0.73-0.75 0.46 (0.14) 0.26-0.61 0.70 (0.03) 0.67-0.75 0.50 (<.01) 0.50-0.50
103 0.58 (0.10) 0.31-0.69 0.40 (0.11) 0.20-0.53 0.53 (0.08) 0.38-0.69 0.64 (0.11) 0.50-0.83 0.58 (0.04) 0.50-0.62 0.42 (0.14) 0.17-0.67
105 0.79 (0.18) 0.23-0.92 0.48 (0.21) 0.08-0.83 0.81 (0.08) 0.65-0.92 0.30 (0.18) 0.00-0.57 0.89 (0.04) 0.81-0.93 0.46 (0.19) 0.09-0.77
106 0.66 (0.14) 0.38-0.88 0.41 (0.23) 0.04-0.79 0.63 (0.13) 0.44-0.81 0.52 (0.22) 0.25-0.86 0.76 (0.10) 0.56-0.87 0.44 (0.25) 0.08-0.88
107 0.89 (0.08) 0.67-0.93 0.46 (0.25) 0.07-0.93 0.91 (0.04) 0.87-1.00 0.47 (0.37) 0.00-1.00 0.93 (0.02) 0.92-1.00 0.67 (0.30) 0.07-1.00
108 0.55 (<.01) 0.55-0.55 0.55 (0.07) 0.50-0.71 0.58 (0.08) 0.45-0.75 0.42 (0.08) 0.30-0.59 0.57 (0.01) 0.55-0.58 0.53 (0.09) 0.32-0.70
11 0.66 (0.21) 0.40-0.91 0.46 (0.42) 0.00-1.00 0.62 (0.12) 0.45-0.70 0.40 (0.45) 0.00-1.00 0.58 (0.23) 0.33-0.89 0.44 (0.19) 0.22-0.67
110 0.88 (0.08) 0.67-0.92 0.41 (0.34) 0.00-0.91 0.84 (0.06) 0.75-0.92 0.63 (0.32) 0.09-1.00 0.86 (0.07) 0.78-0.92 0.56 (0.11) 0.50-0.82
111 0.76 (0.17) 0.40-1.00 0.54 (0.40) 0.00-1.00 0.76 (0.10) 0.60-0.90 0.56 (0.30) 0.11-1.00 0.90 (<.01) 0.89-0.90 0.50 (<.01) 0.50-0.50
112 0.59 (0.11) 0.31-0.69 0.51 (0.11) 0.36-0.78 0.62 (0.08) 0.46-0.69 0.44 (0.12) 0.25-0.67 0.65 (0.05) 0.54-0.69 0.43 (0.20) 0.14-0.75
118 0.66 (0.10) 0.55-0.82 0.58 (0.15) 0.36-0.75 0.63 (0.07) 0.55-0.73 0.38 (0.15) 0.21-0.54 0.60 (0.03) 0.55-0.64 0.50 (<.01) 0.50-0.50
119 0.57 (0.03) 0.50-0.64 0.55 (0.13) 0.21-0.69 0.54 (0.08) 0.43-0.64 0.50 (0.14) 0.29-0.70 0.56 (0.03) 0.50-0.57 0.55 (0.11) 0.35-0.73
121 0.92 (<.01) 0.92-0.92 0.34 (0.27) 0.00-0.64 0.92 (<.01) 0.92-0.92 0.41 (0.40) 0.18-1.00 0.93 (0.05) 0.90-1.00 0.50 (<.01) 0.50-0.50
123 0.77 (0.06) 0.67-0.80 0.43 (0.14) 0.22-0.64 0.69 (0.09) 0.60-0.80 0.57 (0.16) 0.25-0.83 0.79 (<.01) 0.79-0.80 0.38 (0.20) 0.09-0.88
124 0.59 (0.14) 0.36-0.83 0.59 (0.19) 0.27-0.90 0.54 (0.14) 0.36-0.82 0.46 (0.20) 0.10-0.77 0.51 (0.07) 0.44-0.75 0.49 (0.13) 0.20-0.83
126 0.49 (0.15) 0.33-0.83 0.56 (0.19) 0.28-0.88 0.61 (0.16) 0.42-0.83 0.45 (0.19) 0.19-0.66 0.59 (0.13) 0.18-0.67 0.51 (0.10) 0.36-0.82
129 0.58 (0.18) 0.33-0.83 0.58 (0.20) 0.29-0.77 0.71 (0.23) 0.17-0.92 0.26 (0.26) 0.06-0.86 0.52 (0.10) 0.36-0.75 0.57 (0.13) 0.40-0.77
135 0.88 (0.07) 0.79-0.93 0.47 (0.32) 0.08-1.00 0.92 (0.02) 0.86-0.93 0.50 (0.32) 0.00-0.92 0.93 (<.01) 0.92-0.93 0.47 (0.37) 0.00-1.00
146 0.57 (0.03) 0.53-0.61 0.43 (0.08) 0.29-0.54 0.53 (0.06) 0.44-0.61 0.57 (0.12) 0.27-0.74 0.56 (0.03) 0.53-0.61 0.51 (0.12) 0.29-0.75
148 0.62 (0.09) 0.50-0.83 0.55 (0.14) 0.29-0.71 0.61 (0.11) 0.42-0.75 0.42 (0.07) 0.34-0.57 0.52 (0.04) 0.45-0.58 0.48 (0.04) 0.33-0.50
149 0.59 (0.06) 0.50-0.67 0.44 (0.15) 0.27-0.73 0.56 (0.12) 0.37-0.72 0.56 (0.16) 0.34-0.75 0.67 (0.07) 0.53-0.75 0.63 (0.11) 0.42-0.81
15 0.55 (<.01) 0.55-0.55 0.59 (0.22) 0.33-0.83 0.57 (0.09) 0.45-0.64 0.41 (0.27) 0.10-0.70 0.50 (<.01) 0.50-0.50 0.50 (<.01) 0.50-0.50
150 0.64 (0.11) 0.44-0.80 0.58 (0.13) 0.26-0.76 0.60 (0.09) 0.36-0.72 0.41 (0.13) 0.20-0.74 0.72 (0.08) 0.58-0.83 0.63 (0.11) 0.42-0.84
152 0.88 (<.01) 0.88-0.88 0.54 (0.11) 0.30-0.72 0.87 (0.02) 0.83-0.88 0.42 (0.10) 0.24-0.60 0.87 (<.01) 0.86-0.88 0.72 (0.11) 0.60-0.92
155 0.54 (0.02) 0.50-0.56 0.49 (0.12) 0.31-0.68 0.53 (0.08) 0.44-0.67 0.50 (0.09) 0.33-0.62 0.55 (0.06) 0.47-0.67 0.50 (0.13) 0.19-0.69
156 0.49 (0.03) 0.43-0.52 0.52 (0.08) 0.36-0.63 0.52 (0.04) 0.43-0.57 0.42 (0.06) 0.30-0.51 0.49 (0.03) 0.42-0.55 0.41 (0.06) 0.33-0.52
157 0.86 (0.13) 0.50-0.95 0.75 (0.19) 0.41-1.00 0.93 (0.02) 0.90-0.95 0.32 (0.19) 0.00-0.67 0.93 (0.03) 0.86-0.95 0.73 (0.26) 0.17-1.00
158 0.66 (0.18) 0.20-1.00 0.54 (0.18) 0.25-1.00 0.58 (0.17) 0.27-0.87 0.46 (0.20) 0.10-0.75 0.41 (0.20) 0.21-0.73 0.61 (0.23) 0.25-0.91
159 0.87 (0.05) 0.75-0.95 0.46 (0.22) 0.07-0.82 0.89 (0.01) 0.85-0.90 0.40 (0.18) 0.18-0.74 0.89 (<.01) 0.89-0.90 0.70 (0.25) 0.19-1.00
160 0.87 (0.05) 0.72-0.89 0.25 (0.13) 0.09-0.56 0.89 (<.01) 0.89-0.89 0.83 (0.14) 0.53-1.00 0.89 (<.01) 0.88-0.89 0.35 (0.20) 0.17-0.75
162 0.92 (0.02) 0.86-0.93 0.50 (0.22) 0.04-0.85 0.90 (0.05) 0.77-0.93 0.31 (0.19) 0.00-0.58 0.93 (0.04) 0.90-1.00 0.23 (0.19) 0.00-0.50
164 0.95 (0.02) 0.91-0.96 0.50 (0.34) 0.05-0.91 0.96 (<.01) 0.96-0.96 0.52 (0.26) 0.00-0.89 0.95 (<.01) 0.95-0.96 0.34 (0.35) 0.00-1.00
165 0.57 (0.09) 0.36-0.73 0.61 (0.15) 0.33-0.90 0.62 (0.12) 0.45-0.82 0.41 (0.12) 0.20-0.60 0.51 (0.07) 0.33-0.56 0.46 (0.11) 0.20-0.63
166 0.59 (0.05) 0.50-0.67 0.61 (0.12) 0.39-0.77 0.55 (0.07) 0.42-0.67 0.43 (0.09) 0.34-0.59 0.69 (0.14) 0.50-0.90 0.56 (0.09) 0.46-0.69
167 0.56 (0.07) 0.45-0.64 0.47 (0.11) 0.32-0.68 0.59 (0.09) 0.45-0.73 0.49 (0.09) 0.32-0.71 0.61 (0.06) 0.50-0.70 0.57 (0.12) 0.43-0.80
168 0.63 (0.06) 0.54-0.77 0.63 (0.14) 0.50-0.90 0.66 (0.07) 0.54-0.77 0.33 (0.06) 0.23-0.43 0.62 (0.10) 0.46-0.77 0.51 (0.07) 0.38-0.62
169 0.94 (0.03) 0.88-1.00 0.61 (0.36) 0.03-1.00 0.95 (0.02) 0.94-1.00 0.36 (0.28) 0.00-0.77 0.94 (<.01) 0.93-0.95 0.58 (0.40) 0.00-1.00
17 0.39 (0.08) 0.23-0.54 0.49 (0.08) 0.33-0.67 0.46 (0.07) 0.36-0.62 0.52 (0.12) 0.31-0.71 0.29 (0.06) 0.23-0.38 0.35 (0.07) 0.25-0.53
170 0.78 (0.07) 0.58-0.85 0.58 (0.10) 0.39-0.75 0.82 (0.04) 0.77-0.92 0.33 (0.13) 0.14-0.55 0.80 (0.03) 0.75-0.85 0.63 (0.16) 0.40-0.95
171 0.96 (<.01) 0.96-0.96 0.46 (0.32) 0.04-1.00 0.96 (<.01) 0.96-0.96 0.69 (0.24) 0.26-1.00 0.96 (0.01) 0.95-1.00 0.45 (0.20) 0.15-0.71
174 0.95 (0.01) 0.92-0.96 0.35 (0.29) 0.00-0.96 0.96 (0.01) 0.92-0.96 0.55 (0.26) 0.04-0.85 0.96 (0.02) 0.94-1.00 0.49 (0.37) 0.00-1.00
177 0.92 (<.01) 0.92-0.92 0.50 (0.20) 0.25-0.75 0.85 (0.11) 0.69-0.92 0.73 (0.18) 0.50-0.92 0.91 (<.01) 0.91-0.92 0.56 (0.11) 0.50-0.73
185 0.93 (0.04) 0.84-1.00 0.56 (0.38) 0.00-1.00 0.93 (0.03) 0.84-0.95 0.43 (0.28) 0.05-0.95 0.94 (0.02) 0.89-0.95 0.62 (0.26) 0.00-1.00
186 0.73 (0.03) 0.67-0.80 0.76 (0.11) 0.57-0.93 0.76 (0.04) 0.73-0.87 0.29 (0.12) 0.09-0.52 0.75 (0.03) 0.71-0.79 0.62 (0.22) 0.23-0.97
188 0.92 (<.01) 0.92-0.92 0.36 (0.33) 0.00-0.91 0.89 (0.04) 0.83-0.92 0.36 (0.27) 0.09-0.91 0.92 (<.01) 0.92-0.92 0.50 (<.01) 0.50-0.50
189 0.79 (0.07) 0.67-0.83 0.41 (0.19) 0.10-0.70 0.74 (0.10) 0.58-0.92 0.50 (0.28) 0.05-0.90 0.81 (0.01) 0.80-0.83 0.56 (0.11) 0.50-0.81
190 0.92 (0.03) 0.86-0.94 0.56 (0.27) 0.12-0.96 0.81 (0.10) 0.67-0.94 0.47 (0.29) 0.00-0.93 0.90 (0.13) 0.46-1.00 0.38 (0.22) 0.00-0.67
192 0.90 (0.05) 0.77-0.92 0.44 (0.26) 0.00-0.83 0.92 (<.01) 0.92-0.92 0.53 (0.23) 0.17-0.88 0.92 (<.01) 0.92-0.92 0.60 (0.33) 0.00-1.00
195 0.93 (0.02) 0.88-0.94 0.21 (0.23) 0.00-0.69 0.94 (<.01) 0.94-0.94 0.83 (0.19) 0.56-1.00 0.93 (<.01) 0.93-0.94 0.76 (0.23) 0.33-1.00
196 0.80 (0.05) 0.67-0.83 0.53 (0.23) 0.20-0.88 0.66 (0.14) 0.50-0.92 0.54 (0.26) 0.10-0.88 0.83 (<.01) 0.82-0.83 0.51 (0.03) 0.50-0.60
20 0.74 (0.09) 0.57-0.86 0.75 (0.26) 0.30-1.00 0.79 (0.07) 0.64-0.86 0.36 (0.12) 0.21-0.55 0.76 (0.04) 0.73-0.86 0.64 (0.18) 0.48-0.97
206 0.88 (0.01) 0.83-0.89 0.43 (0.24) 0.16-0.97 0.89 (<.01) 0.89-0.89 0.75 (0.23) 0.03-0.97 0.91 (0.03) 0.88-0.94 0.60 (0.35) 0.13-1.00
207 0.85 (0.03) 0.79-0.93 0.65 (0.22) 0.25-0.96 0.85 (0.02) 0.79-0.86 0.49 (0.28) 0.06-0.86 0.84 (<.01) 0.83-0.85 0.61 (0.16) 0.35-0.86
21 0.54 (0.07) 0.40-0.60 0.48 (0.07) 0.37-0.63 0.53 (0.08) 0.33-0.67 0.49 (0.10) 0.35-0.69 0.58 (0.02) 0.57-0.64 0.57 (0.08) 0.44-0.73
211 0.96 (0.01) 0.92-0.96 0.53 (0.21) 0.16-0.84 0.96 (<.01) 0.96-0.96 0.53 (0.22) 0.04-0.88 0.98 (0.02) 0.96-1.00 0.50 (0.31) 0.00-0.96
212 0.95 (<.01) 0.95-0.95 0.46 (0.25) 0.00-0.79 0.91 (0.03) 0.85-0.95 0.62 (0.31) 0.05-1.00 0.95 (<.01) 0.95-0.95 0.39 (0.30) 0.00-0.89
214 0.93 (0.02) 0.88-0.94 0.30 (0.23) 0.07-0.93 0.91 (0.03) 0.88-0.94 0.85 (0.14) 0.60-1.00 0.92 (0.01) 0.91-0.94 0.32 (0.18) 0.07-0.50
216 0.81 (0.02) 0.78-0.81 0.48 (0.10) 0.32-0.68 0.81 (<.01) 0.81-0.81 0.51 (0.11) 0.35-0.69 0.82 (<.01) 0.81-0.83 0.58 (0.15) 0.29-0.71
22 0.72 (0.04) 0.58-0.75 0.51 (0.13) 0.26-0.78 0.74 (0.08) 0.58-0.83 0.46 (0.16) 0.20-0.82 0.67 (0.05) 0.60-0.73 0.50 (0.07) 0.33-0.67
220 0.87 (0.07) 0.75-0.92 0.42 (0.21) 0.00-0.70 0.70 (0.12) 0.55-1.00 0.50 (0.28) 0.00-1.00 0.87 (0.09) 0.64-0.92 0.53 (0.24) 0.00-1.00
25 0.74 (0.03) 0.67-0.75 0.64 (0.13) 0.50-0.87 0.79 (0.09) 0.58-0.83 0.26 (0.10) 0.15-0.41 0.67 (0.06) 0.58-0.75 0.70 (0.16) 0.50-0.90
26 0.80 (0.01) 0.79-0.81 0.53 (0.14) 0.30-0.67 0.79 (0.02) 0.75-0.81 0.60 (0.09) 0.45-0.74 0.82 (0.03) 0.79-0.87 0.53 (0.15) 0.33-0.74
27 0.50 (0.12) 0.33-0.83 0.47 (0.21) 0.06-0.89 0.44 (0.18) 0.08-0.73 0.56 (0.17) 0.40-0.94 0.73 (0.12) 0.50-0.90 0.82 (0.11) 0.63-1.00
30 0.87 (0.07) 0.71-1.00 0.69 (0.26) 0.21-1.00 0.87 (0.06) 0.79-1.00 0.36 (0.31) 0.00-1.00 0.89 (0.04) 0.85-0.92 0.77 (0.19) 0.50-1.00
31 0.93 (<.01) 0.93-0.93 0.42 (0.38) 0.00-1.00 0.93 (0.03) 0.86-1.00 0.55 (0.39) 0.00-1.00 0.92 (<.01) 0.92-0.93 0.35 (0.37) 0.00-1.00
32 0.79 (0.16) 0.36-0.86 0.61 (0.12) 0.44-0.83 0.80 (0.09) 0.57-0.93 0.36 (0.15) 0.12-0.69 0.88 (0.04) 0.85-0.92 0.52 (0.18) 0.17-0.75
33 0.91 (<.01) 0.91-0.91 0.64 (0.25) 0.10-1.00 0.92 (0.02) 0.91-1.00 0.49 (0.34) 0.00-1.00 0.92 (0.04) 0.89-1.00 0.50 (<.01) 0.50-0.50
35 0.75 (0.13) 0.50-0.83 0.48 (0.13) 0.30-0.70 0.80 (0.04) 0.75-0.83 0.58 (0.13) 0.30-0.70 0.89 (0.04) 0.82-0.91 0.47 (0.08) 0.30-0.50
38 0.49 (0.16) 0.18-0.67 0.33 (0.19) 0.13-0.84 0.58 (0.11) 0.36-0.73 0.56 (0.12) 0.28-0.79 0.61 (0.07) 0.45-0.69 0.47 (0.19) 0.16-0.80
40 0.90 (0.03) 0.82-0.91 0.68 (0.33) 0.10-1.00 0.90 (0.02) 0.82-0.91 0.34 (0.33) 0.00-0.80 0.91 (<.01) 0.91-0.91 0.50 (<.01) 0.50-0.50
43 0.84 (0.11) 0.64-0.91 0.37 (0.18) 0.20-0.70 0.73 (0.10) 0.64-0.91 0.74 (0.07) 0.60-0.80 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
44 0.43 (0.14) 0.36-0.64 0.64 (0.34) 0.25-0.96 0.50 (0.05) 0.45-0.55 0.26 (0.16) 0.11-0.43 0.40 (0.12) 0.30-0.55 0.69 (0.22) 0.50-0.89
49 0.62 (0.13) 0.45-0.82 0.67 (0.19) 0.46-0.90 0.59 (0.08) 0.45-0.67 0.36 (0.09) 0.22-0.47 0.53 (0.08) 0.42-0.67 0.53 (0.12) 0.32-0.69
51 0.91 (<.01) 0.91-0.92 0.61 (0.23) 0.09-0.91 0.83 (0.07) 0.73-0.92 0.52 (0.20) 0.14-0.85 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
53 0.93 (<.01) 0.93-0.93 0.48 (0.19) 0.21-0.79 0.92 (0.02) 0.87-0.93 0.59 (0.25) 0.18-0.93 0.94 (0.03) 0.91-1.00 0.37 (0.19) 0.00-0.57
56 0.83 (0.15) 0.60-0.91 0.21 (0.09) 0.11-0.33 0.88 (0.04) 0.82-0.91 0.53 (0.37) 0.00-0.85 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
61 0.91 (<.01) 0.91-0.92 0.78 (0.30) 0.20-1.00 0.91 (<.01) 0.91-0.92 0.30 (0.31) 0.08-1.00 0.91 (<.01) 0.90-0.92 0.52 (0.06) 0.50-0.68
63 0.91 (<.01) 0.91-0.91 0.51 (0.32) 0.00-1.00 0.90 (0.04) 0.82-1.00 0.44 (0.37) 0.00-1.00 0.92 (0.03) 0.90-1.00 0.50 (<.01) 0.50-0.50
66 0.86 (0.09) 0.64-0.91 0.57 (0.26) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.40 (0.30) 0.00-0.90 0.91 (0.04) 0.88-1.00 0.50 (<.01) 0.50-0.50
67 0.68 (0.11) 0.36-0.79 0.54 (0.14) 0.30-0.80 0.72 (0.07) 0.64-0.79 0.55 (0.16) 0.26-0.70 0.70 (<.01) 0.69-0.71 0.26 (0.12) 0.11-0.60
71 0.65 (0.03) 0.64-0.73 0.61 (0.23) 0.21-0.93 0.66 (0.08) 0.55-0.82 0.48 (0.41) 0.04-1.00 0.61 (0.01) 0.60-0.64 0.50 (<.01) 0.50-0.50
73 0.85 (0.02) 0.77-0.86 0.32 (0.27) 0.09-0.96 0.84 (0.07) 0.69-0.93 0.71 (0.37) 0.02-1.00 0.85 (<.01) 0.85-0.85 0.43 (0.12) 0.27-0.68
74 0.91 (0.03) 0.86-0.93 0.51 (0.16) 0.31-0.69 0.92 (0.02) 0.86-0.93 0.52 (0.33) 0.08-1.00 0.93 (0.03) 0.92-1.00 0.55 (0.38) 0.00-1.00
77 0.84 (0.08) 0.70-0.90 0.56 (0.22) 0.33-0.83 0.80 (0.08) 0.70-0.90 0.35 (0.24) 0.00-0.78 0.89 (0.01) 0.88-0.90 0.50 (<.01) 0.50-0.50
78 0.91 (<.01) 0.91-0.91 0.57 (0.42) 0.10-1.00 0.87 (0.05) 0.82-0.91 0.34 (0.34) 0.00-0.85 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
81 0.54 (0.08) 0.47-0.64 0.56 (0.04) 0.52-0.60 0.48 (0.04) 0.43-0.53 0.40 (0.07) 0.32-0.48 0.50 (0.09) 0.42-0.62 0.46 (0.09) 0.34-0.55
84 0.92 (<.01) 0.92-0.92 0.50 (0.34) 0.00-1.00 0.92 (<.01) 0.92-0.92 0.57 (0.26) 0.00-0.83 0.96 (0.04) 0.92-1.00 0.48 (0.41) 0.00-1.00
85 0.84 (0.03) 0.77-0.85 0.52 (0.11) 0.39-0.68 0.85 (<.01) 0.85-0.85 0.48 (0.11) 0.27-0.64 0.83 (<.01) 0.83-0.83 0.50 (0.09) 0.25-0.65
86 0.90 (0.05) 0.77-0.93 0.59 (0.31) 0.00-1.00 0.92 (0.02) 0.85-0.93 0.47 (0.31) 0.00-1.00 0.93 (<.01) 0.92-0.93 0.53 (0.37) 0.00-1.00
88 0.53 (0.32) 0.20-0.80 0.38 (0.15) 0.25-0.56 0.70 (0.12) 0.60-0.80 0.52 (0.25) 0.25-0.75 0.72 (0.09) 0.60-0.80 0.48 (0.03) 0.44-0.50
6.2.1.1.3 Studying
(tmp %>% filter(outcome == "study"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for study
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
01 0.90 (0.03) 0.83-0.92 0.54 (0.30) 0.05-0.90 0.88 (0.09) 0.67-0.92 0.44 (0.24) 0.10-0.73 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
02 0.59 (0.15) 0.31-0.85 0.62 (0.16) 0.38-0.85 0.62 (0.14) 0.38-0.85 0.34 (0.20) 0.08-0.62 0.69 (0.14) 0.42-0.92 0.69 (0.21) 0.40-1.00
03 0.73 (0.16) 0.45-0.90 0.62 (0.13) 0.50-0.81 0.60 (0.15) 0.36-0.80 0.61 (0.12) 0.44-0.78 0.78 (0.07) 0.64-0.82 0.50 (0.11) 0.31-0.67
05 0.71 (0.11) 0.50-0.83 0.67 (0.17) 0.37-0.96 0.61 (0.10) 0.46-0.83 0.39 (0.10) 0.19-0.52 0.67 (0.07) 0.50-0.75 0.61 (0.13) 0.33-0.78
08 0.64 (0.05) 0.50-0.67 0.40 (0.09) 0.22-0.50 0.60 (0.10) 0.42-0.75 0.57 (0.09) 0.41-0.75 0.67 (0.09) 0.45-0.73 0.45 (0.09) 0.29-0.54
09 0.92 (0.03) 0.91-1.00 0.52 (0.35) 0.00-1.00 0.90 (0.03) 0.83-0.92 0.42 (0.23) 0.10-0.70 0.91 (0.04) 0.89-1.00 0.46 (0.11) 0.20-0.50
10 0.70 (0.03) 0.67-0.73 0.69 (0.13) 0.50-0.84 0.71 (0.07) 0.64-0.83 0.28 (0.08) 0.16-0.41 0.76 (0.07) 0.67-0.90 0.53 (0.09) 0.50-0.75
103 0.45 (0.13) 0.25-0.56 0.41 (0.10) 0.21-0.50 0.42 (0.11) 0.25-0.56 0.64 (0.10) 0.51-0.81 0.45 (0.06) 0.31-0.56 0.39 (0.08) 0.27-0.48
105 0.83 (0.16) 0.47-1.00 0.43 (0.28) 0.00-1.00 0.57 (0.11) 0.40-0.85 0.57 (0.30) 0.11-1.00 0.85 (0.16) 0.40-0.94 0.45 (0.37) 0.00-1.00
106 0.50 (0.14) 0.25-0.69 0.52 (0.11) 0.35-0.72 0.49 (0.17) 0.19-0.69 0.49 (0.19) 0.25-0.88 0.57 (0.08) 0.44-0.69 0.67 (0.05) 0.58-0.76
107 0.50 (0.06) 0.40-0.60 0.53 (0.15) 0.37-0.79 0.48 (0.07) 0.33-0.60 0.51 (0.15) 0.26-0.70 0.50 (0.05) 0.40-0.54 0.47 (0.11) 0.24-0.66
108 0.55 (0.04) 0.50-0.65 0.48 (0.09) 0.28-0.60 0.57 (0.08) 0.45-0.70 0.52 (0.14) 0.33-0.70 0.55 (0.04) 0.47-0.65 0.59 (0.11) 0.40-0.75
11 0.48 (0.09) 0.40-0.60 0.26 (0.09) 0.12-0.33 0.41 (0.06) 0.36-0.50 0.63 (0.12) 0.50-0.75 0.36 (0.12) 0.22-0.50 0.32 (0.18) 0.19-0.57
110 0.82 (0.03) 0.75-0.83 0.45 (0.17) 0.20-0.80 0.74 (0.10) 0.50-0.83 0.56 (0.12) 0.33-0.80 0.83 (0.06) 0.67-0.89 0.51 (0.12) 0.35-0.88
111 0.59 (0.18) 0.30-0.90 0.57 (0.17) 0.36-0.86 0.54 (0.18) 0.30-0.90 0.51 (0.17) 0.14-0.71 0.50 (0.15) 0.20-0.67 0.42 (0.13) 0.14-0.61
112 0.71 (0.06) 0.62-0.77 0.55 (0.18) 0.20-0.92 0.67 (0.07) 0.62-0.77 0.55 (0.16) 0.15-0.77 0.70 (0.05) 0.62-0.77 0.57 (0.22) 0.08-0.83
113 0.81 (0.18) 0.30-0.90 0.47 (0.25) 0.11-0.83 0.86 (0.06) 0.70-0.90 0.40 (0.31) 0.00-0.89 0.89 (0.04) 0.80-0.90 0.49 (0.02) 0.44-0.50
118 0.81 (<.01) 0.80-0.82 0.75 (0.20) 0.39-0.94 0.81 (<.01) 0.80-0.82 0.34 (0.21) 0.03-0.56 0.78 (0.03) 0.75-0.82 0.50 (<.01) 0.50-0.50
119 0.51 (0.11) 0.29-0.64 0.32 (0.05) 0.22-0.43 0.43 (0.07) 0.36-0.57 0.74 (0.07) 0.56-0.80 0.62 (0.05) 0.50-0.64 0.38 (0.10) 0.20-0.56
121 0.65 (0.10) 0.50-0.75 0.57 (0.18) 0.40-0.75 0.62 (0.05) 0.58-0.67 0.36 (0.10) 0.25-0.50 0.76 (0.18) 0.50-0.91 0.76 (0.19) 0.50-0.94
123 0.54 (0.14) 0.33-0.73 0.54 (0.06) 0.43-0.61 0.61 (0.10) 0.47-0.80 0.45 (0.10) 0.30-0.65 0.70 (0.05) 0.53-0.73 0.48 (0.09) 0.35-0.61
124 0.90 (0.10) 0.73-1.00 0.65 (0.34) 0.20-1.00 0.91 (<.01) 0.90-0.92 0.58 (0.34) 0.00-1.00 0.92 (0.04) 0.89-1.00 0.50 (<.01) 0.50-0.50
126 0.60 (0.13) 0.42-0.75 0.62 (0.15) 0.33-0.81 0.68 (0.14) 0.42-0.92 0.36 (0.16) 0.17-0.70 0.56 (0.09) 0.36-0.73 0.55 (0.13) 0.30-0.71
129 0.50 (0.17) 0.25-0.75 0.57 (0.13) 0.19-0.72 0.60 (0.07) 0.42-0.67 0.37 (0.08) 0.22-0.50 0.58 (0.13) 0.33-0.73 0.52 (0.09) 0.42-0.67
132 0.27 (0.24) 0.09-0.73 0.38 (0.21) 0.10-0.70 0.27 (0.11) 0.09-0.45 0.64 (0.29) 0.10-0.95 0.08 (0.12) 0.00-0.36 0.34 (0.35) 0.00-0.80
133 0.37 (0.05) 0.30-0.40 0.30 (0.12) 0.12-0.42 0.29 (0.12) 0.10-0.40 0.75 (0.21) 0.48-1.00 0.40 (<.01) 0.40-0.40 0.49 (0.07) 0.35-0.58
135 0.42 (0.12) 0.21-0.71 0.49 (0.19) 0.17-0.88 0.51 (0.13) 0.36-0.79 0.49 (0.17) 0.08-0.65 0.50 (0.12) 0.36-0.77 0.54 (0.15) 0.29-0.79
14 0.81 (0.06) 0.67-0.83 0.36 (0.11) 0.25-0.53 0.79 (0.07) 0.67-0.83 0.61 (0.18) 0.28-0.80 0.82 (0.02) 0.80-0.83 0.50 (<.01) 0.50-0.50
146 0.83 (0.09) 0.56-0.89 0.56 (0.18) 0.22-0.90 0.80 (0.06) 0.67-0.89 0.38 (0.13) 0.12-0.63 0.77 (0.14) 0.47-0.89 0.33 (0.16) 0.00-0.57
148 0.86 (0.10) 0.67-0.92 0.16 (0.12) 0.00-0.36 0.79 (0.09) 0.67-0.92 0.77 (0.23) 0.27-1.00 0.89 (0.03) 0.82-0.92 0.42 (0.18) 0.00-0.50
149 0.82 (0.05) 0.67-0.84 0.52 (0.07) 0.35-0.62 0.83 (0.02) 0.78-0.84 0.66 (0.14) 0.35-0.87 0.88 (0.05) 0.83-0.94 0.37 (0.13) 0.22-0.69
15 0.66 (0.05) 0.64-0.73 0.81 (0.17) 0.66-1.00 0.68 (0.05) 0.64-0.73 0.29 (0.25) 0.04-0.61 0.60 (<.01) 0.60-0.60 0.50 (<.01) 0.50-0.50
150 0.60 (<.01) 0.60-0.60 0.47 (0.07) 0.35-0.56 0.57 (0.05) 0.48-0.64 0.49 (0.09) 0.39-0.65 0.59 (0.01) 0.58-0.62 0.55 (0.08) 0.43-0.74
152 0.88 (<.01) 0.88-0.88 0.57 (0.09) 0.32-0.73 0.88 (0.02) 0.83-0.92 0.38 (0.10) 0.17-0.59 0.87 (<.01) 0.86-0.88 0.49 (0.08) 0.35-0.61
154 0.83 (0.10) 0.56-0.94 0.47 (0.12) 0.10-0.60 0.71 (0.08) 0.56-0.82 0.57 (0.24) 0.13-0.89 0.82 (0.06) 0.65-0.88 0.36 (0.13) 0.14-0.57
155 0.92 (0.05) 0.78-0.94 0.39 (0.20) 0.06-0.65 0.77 (0.08) 0.67-0.94 0.87 (0.21) 0.26-1.00 0.93 (0.02) 0.88-0.94 0.49 (0.31) 0.12-1.00
156 0.63 (0.12) 0.29-0.81 0.50 (0.11) 0.33-0.74 0.58 (0.07) 0.43-0.67 0.55 (0.10) 0.41-0.74 0.59 (0.16) 0.30-0.71 0.64 (0.10) 0.34-0.76
157 0.61 (0.01) 0.60-0.65 0.56 (0.22) 0.23-0.84 0.61 (0.06) 0.48-0.70 0.46 (0.21) 0.21-0.77 0.60 (0.02) 0.58-0.62 0.66 (0.14) 0.42-0.90
158 0.82 (0.06) 0.67-0.87 0.65 (0.21) 0.31-0.85 0.78 (0.05) 0.73-0.87 0.32 (0.13) 0.15-0.67 0.82 (0.04) 0.73-0.87 0.58 (0.20) 0.19-0.88
159 0.69 (<.01) 0.68-0.70 0.41 (0.17) 0.17-0.59 0.66 (0.04) 0.60-0.75 0.59 (0.15) 0.30-0.82 0.69 (0.02) 0.67-0.75 0.69 (0.15) 0.41-0.94
160 0.71 (0.03) 0.61-0.72 0.64 (0.13) 0.43-0.91 0.65 (0.12) 0.50-0.89 0.37 (0.11) 0.17-0.55 0.74 (0.03) 0.71-0.78 0.60 (0.09) 0.42-0.77
162 0.53 (0.09) 0.31-0.62 0.40 (0.14) 0.12-0.62 0.41 (0.06) 0.31-0.50 0.72 (0.12) 0.42-0.90 0.56 (0.13) 0.33-0.73 0.63 (0.16) 0.34-0.81
164 0.93 (0.04) 0.83-0.96 0.71 (0.25) 0.09-0.95 0.83 (0.07) 0.74-0.96 0.45 (0.24) 0.18-1.00 0.88 (0.22) 0.13-0.96 0.64 (0.23) 0.18-0.86
165 0.55 (0.11) 0.45-0.82 0.59 (0.09) 0.42-0.75 0.52 (0.07) 0.45-0.64 0.46 (0.13) 0.27-0.71 0.53 (0.20) 0.20-0.73 0.42 (0.19) 0.06-0.58
166 0.64 (0.09) 0.33-0.67 0.46 (0.09) 0.25-0.61 0.62 (0.07) 0.50-0.75 0.58 (0.14) 0.41-0.88 0.75 (0.13) 0.64-0.90 0.48 (0.06) 0.27-0.50
167 0.48 (0.07) 0.36-0.64 0.54 (0.18) 0.27-0.77 0.52 (0.09) 0.36-0.64 0.50 (0.19) 0.28-0.93 0.49 (0.02) 0.45-0.50 0.57 (0.09) 0.50-0.75
168 0.84 (0.05) 0.69-0.92 0.52 (0.13) 0.20-0.73 0.77 (0.06) 0.62-0.85 0.46 (0.16) 0.18-0.75 0.80 (0.09) 0.58-0.85 0.28 (0.14) 0.05-0.59
169 0.88 (0.01) 0.88-0.89 0.41 (0.17) 0.23-0.71 0.87 (0.02) 0.84-0.89 0.70 (0.16) 0.37-0.86 0.94 (0.06) 0.88-1.00 0.62 (0.22) 0.46-0.93
17 0.81 (0.16) 0.43-0.93 0.44 (0.28) 0.00-0.92 0.75 (0.09) 0.62-0.92 0.60 (0.35) 0.04-1.00 0.87 (0.12) 0.54-1.00 0.51 (0.30) 0.00-1.00
170 0.63 (0.16) 0.31-0.85 0.62 (0.19) 0.32-0.92 0.65 (0.13) 0.44-0.85 0.36 (0.17) 0.11-0.64 0.63 (0.13) 0.42-0.82 0.62 (0.28) 0.00-0.92
171 0.52 (0.01) 0.50-0.54 0.46 (0.07) 0.30-0.52 0.43 (0.09) 0.33-0.56 0.55 (0.06) 0.45-0.67 0.53 (0.07) 0.41-0.64 0.48 (0.08) 0.37-0.66
174 0.61 (0.11) 0.28-0.72 0.60 (0.13) 0.38-0.79 0.70 (0.05) 0.64-0.80 0.39 (0.13) 0.24-0.69 0.69 (0.05) 0.62-0.79 0.58 (0.14) 0.42-0.80
177 0.58 (0.15) 0.46-0.77 0.49 (0.13) 0.39-0.68 0.69 (0.14) 0.54-0.85 0.37 (0.12) 0.23-0.47 0.66 (0.17) 0.42-0.82 0.70 (0.24) 0.38-0.89
18 0.78 (0.12) 0.42-0.84 0.61 (0.17) 0.31-0.83 0.82 (0.03) 0.74-0.84 0.40 (0.13) 0.23-0.71 0.73 (0.26) 0.11-0.89 0.44 (0.13) 0.22-0.61
180 0.64 (<.01) 0.64-0.64 0.60 (0.08) 0.48-0.79 0.58 (0.08) 0.45-0.73 0.41 (0.09) 0.29-0.61 0.66 (0.03) 0.64-0.70 0.50 (<.01) 0.50-0.50
181 0.71 (0.21) 0.45-0.91 0.35 (0.26) 0.00-0.80 0.85 (0.09) 0.64-1.00 0.51 (0.35) 0.00-1.00 0.80 (0.26) 0.00-1.00 0.51 (0.09) 0.38-0.75
184 0.68 (0.05) 0.54-0.75 0.59 (0.18) 0.25-0.89 0.68 (0.01) 0.67-0.69 0.40 (0.29) 0.05-0.84 0.62 (0.04) 0.56-0.67 0.50 (0.01) 0.45-0.50
185 0.41 (0.05) 0.32-0.47 0.33 (0.17) 0.02-0.58 0.45 (0.06) 0.37-0.55 0.61 (0.14) 0.45-0.90 0.44 (0.03) 0.40-0.50 0.55 (0.10) 0.40-0.71
186 0.57 (0.05) 0.47-0.60 0.32 (0.08) 0.17-0.48 0.53 (0.08) 0.33-0.60 0.72 (0.13) 0.37-0.89 0.56 (0.02) 0.54-0.60 0.47 (0.10) 0.24-0.65
187 0.95 (<.01) 0.95-0.95 0.46 (0.17) 0.24-0.71 0.95 (<.01) 0.95-0.95 0.61 (0.08) 0.50-0.68 0.94 (<.01) 0.94-0.95 0.54 (0.40) 0.00-0.93
188 0.81 (0.11) 0.58-0.92 0.30 (0.15) 0.09-0.55 0.79 (0.05) 0.67-0.83 0.79 (0.15) 0.55-1.00 0.90 (0.05) 0.75-0.92 0.43 (0.18) 0.00-0.64
189 0.67 (<.01) 0.67-0.67 0.62 (0.10) 0.44-0.77 0.74 (0.09) 0.58-0.83 0.40 (0.07) 0.28-0.53 0.71 (0.02) 0.67-0.73 0.50 (<.01) 0.50-0.50
190 0.47 (0.04) 0.43-0.53 0.44 (0.12) 0.14-0.58 0.51 (0.08) 0.35-0.64 0.52 (0.14) 0.36-0.76 0.47 (0.08) 0.38-0.59 0.54 (0.13) 0.38-0.75
192 0.53 (0.05) 0.38-0.62 0.54 (0.17) 0.29-0.81 0.51 (0.09) 0.38-0.69 0.60 (0.16) 0.26-0.90 0.54 (<.01) 0.54-0.54 0.64 (0.13) 0.33-0.86
195 0.59 (0.15) 0.29-0.71 0.44 (0.16) 0.15-0.61 0.55 (0.08) 0.46-0.71 0.58 (0.15) 0.41-0.92 0.64 (0.13) 0.42-0.80 0.47 (0.15) 0.15-0.76
196 0.46 (0.04) 0.42-0.50 0.46 (0.13) 0.19-0.66 0.46 (0.04) 0.42-0.50 0.42 (0.14) 0.17-0.68 0.46 (0.03) 0.42-0.50 0.50 (<.01) 0.50-0.50
20 0.61 (0.10) 0.43-0.71 0.51 (0.16) 0.22-0.76 0.51 (0.10) 0.36-0.71 0.62 (0.18) 0.36-0.91 0.56 (0.05) 0.43-0.64 0.42 (0.16) 0.04-0.57
201 0.53 (0.03) 0.45-0.55 0.61 (0.12) 0.40-0.70 0.43 (0.04) 0.36-0.45 0.37 (0.13) 0.20-0.55 0.45 (<.01) 0.45-0.45 0.50 (<.01) 0.50-0.50
206 0.52 (0.05) 0.44-0.56 0.45 (0.09) 0.28-0.66 0.49 (0.05) 0.39-0.56 0.54 (0.12) 0.36-0.71 0.46 (0.12) 0.12-0.56 0.34 (0.11) 0.10-0.50
207 0.78 (<.01) 0.77-0.79 0.57 (0.26) 0.23-0.91 0.77 (0.02) 0.71-0.79 0.43 (0.31) 0.06-0.80 0.77 (<.01) 0.75-0.77 0.46 (0.18) 0.22-0.70
209 0.92 (0.04) 0.83-1.00 0.57 (0.39) 0.00-1.00 0.84 (0.08) 0.67-0.93 0.33 (0.29) 0.00-1.00 0.91 (0.05) 0.75-0.93 0.51 (0.29) 0.08-1.00
21 0.93 (<.01) 0.93-0.93 0.59 (0.26) 0.07-0.93 0.82 (0.06) 0.73-0.87 0.37 (0.29) 0.00-0.93 0.93 (<.01) 0.93-0.93 0.79 (0.23) 0.15-1.00
211 0.96 (<.01) 0.96-0.96 0.58 (0.33) 0.00-1.00 0.96 (<.01) 0.96-0.96 0.33 (0.31) 0.00-0.88 0.96 (<.01) 0.96-0.96 0.50 (0.30) 0.14-1.00
212 0.86 (0.11) 0.60-0.95 0.71 (0.30) 0.05-1.00 0.79 (0.05) 0.71-0.86 0.50 (0.30) 0.16-1.00 0.94 (0.02) 0.89-0.95 0.51 (0.30) 0.11-1.00
214 0.93 (0.03) 0.81-0.94 0.29 (0.29) 0.00-1.00 0.90 (0.05) 0.81-0.94 0.66 (0.23) 0.20-0.93 0.92 (0.02) 0.87-0.94 0.43 (0.23) 0.07-0.86
216 0.92 (0.02) 0.89-0.93 0.65 (0.22) 0.37-0.94 0.92 (0.03) 0.85-0.93 0.45 (0.14) 0.14-0.65 0.92 (<.01) 0.92-0.93 0.51 (0.16) 0.30-0.78
22 0.88 (0.09) 0.67-0.93 0.64 (0.25) 0.00-1.00 0.88 (0.05) 0.79-0.93 0.41 (0.30) 0.00-0.92 0.95 (0.05) 0.90-1.00 0.50 (0.19) 0.25-0.92
220 0.91 (<.01) 0.91-0.92 0.49 (0.28) 0.00-1.00 0.81 (0.12) 0.58-1.00 0.46 (0.32) 0.00-0.90 0.88 (0.08) 0.67-0.91 0.46 (0.18) 0.00-0.80
221 0.95 (<.01) 0.95-0.95 0.64 (0.17) 0.27-0.93 0.95 (<.01) 0.93-0.95 0.42 (0.18) 0.05-0.64 0.95 (<.01) 0.94-0.95 0.65 (0.12) 0.32-0.79
23 0.86 (0.12) 0.64-0.93 0.55 (0.38) 0.00-0.85 0.89 (0.06) 0.79-0.93 0.41 (0.32) 0.08-0.85 0.93 (0.07) 0.85-1.00 0.63 (0.38) 0.08-0.92
25 0.75 (<.01) 0.75-0.75 0.52 (0.05) 0.50-0.63 0.61 (0.12) 0.50-0.75 0.55 (0.14) 0.39-0.78 0.70 (0.06) 0.60-0.75 0.54 (0.07) 0.48-0.67
26 0.92 (0.05) 0.75-0.94 0.59 (0.26) 0.00-1.00 0.87 (0.06) 0.79-0.94 0.66 (0.28) 0.13-1.00 0.94 (0.02) 0.92-1.00 0.45 (0.27) 0.00-0.87
27 0.55 (0.16) 0.17-0.75 0.49 (0.22) 0.14-0.83 0.54 (0.20) 0.08-0.83 0.44 (0.22) 0.13-0.94 0.68 (0.10) 0.50-0.83 0.72 (0.12) 0.54-0.94
28 0.93 (<.01) 0.93-0.93 0.54 (0.26) 0.15-1.00 0.90 (0.07) 0.71-1.00 0.50 (0.32) 0.00-0.92 0.93 (0.03) 0.92-1.00 0.56 (0.27) 0.25-1.00
30 0.77 (0.02) 0.69-0.79 0.61 (0.21) 0.24-0.87 0.72 (0.08) 0.57-0.85 0.36 (0.20) 0.10-0.64 0.77 (0.03) 0.69-0.85 0.74 (0.16) 0.42-0.93
31 0.38 (0.20) 0.21-0.71 0.54 (0.08) 0.50-0.78 0.61 (0.10) 0.43-0.79 0.38 (0.14) 0.14-0.72 0.63 (0.10) 0.38-0.77 0.60 (0.08) 0.47-0.72
32 0.71 (<.01) 0.71-0.71 0.60 (0.14) 0.36-0.78 0.71 (0.03) 0.64-0.79 0.42 (0.09) 0.30-0.55 0.73 (0.03) 0.69-0.77 0.61 (0.06) 0.45-0.68
35 0.86 (0.04) 0.83-0.92 0.75 (0.23) 0.30-0.95 0.87 (0.04) 0.83-0.92 0.21 (0.23) 0.00-0.65 0.82 (<.01) 0.82-0.83 0.54 (0.11) 0.50-0.80
36 0.80 (0.21) 0.27-0.92 0.49 (0.26) 0.00-1.00 0.79 (0.07) 0.73-0.92 0.55 (0.32) 0.09-1.00 0.92 (0.03) 0.90-1.00 0.50 (<.01) 0.50-0.50
38 0.86 (0.12) 0.64-0.93 0.58 (0.24) 0.10-1.00 0.69 (0.14) 0.45-0.93 0.34 (0.24) 0.10-1.00 0.89 (0.08) 0.64-0.93 0.50 (0.32) 0.00-0.92
39 0.86 (0.11) 0.64-0.93 0.49 (0.30) 0.08-0.92 0.61 (0.11) 0.36-0.79 0.58 (0.28) 0.08-0.92 0.91 (0.04) 0.77-0.92 0.35 (0.25) 0.00-0.83
40 0.56 (0.22) 0.27-0.82 0.26 (0.18) 0.00-0.50 0.48 (0.13) 0.27-0.73 0.58 (0.16) 0.33-0.83 0.55 (0.13) 0.36-0.82 0.44 (0.18) 0.17-0.78
42 0.64 (<.01) 0.64-0.64 0.54 (0.24) 0.29-0.86 0.68 (0.12) 0.55-0.82 0.48 (0.23) 0.25-0.71 0.62 (0.02) 0.60-0.64 0.50 (<.01) 0.50-0.50
43 0.48 (0.14) 0.27-0.64 0.49 (0.18) 0.23-0.82 0.51 (0.10) 0.36-0.64 0.54 (0.15) 0.27-0.70 0.49 (0.07) 0.40-0.60 0.53 (0.07) 0.48-0.68
44 0.30 (0.05) 0.27-0.36 0.41 (0.06) 0.33-0.46 0.32 (0.05) 0.27-0.36 0.49 (0.06) 0.42-0.54 0.29 (0.02) 0.27-0.30 0.50 (<.01) 0.50-0.50
49 0.65 (0.13) 0.36-0.75 0.74 (0.20) 0.30-0.89 0.62 (0.13) 0.36-0.75 0.34 (0.15) 0.17-0.65 0.52 (0.11) 0.40-0.67 0.58 (0.14) 0.38-0.79
51 0.91 (0.04) 0.82-1.00 0.44 (0.34) 0.00-1.00 0.86 (0.08) 0.67-1.00 0.48 (0.37) 0.00-1.00 0.88 (0.07) 0.67-0.92 0.51 (0.10) 0.33-0.82
52 0.70 (0.28) 0.09-0.91 0.62 (0.33) 0.00-1.00 0.54 (0.10) 0.36-0.73 0.36 (0.32) 0.00-0.80 0.58 (0.37) 0.00-1.00 0.88 (0.18) 0.50-1.00
53 0.93 (<.01) 0.93-0.93 0.77 (0.21) 0.50-1.00 0.90 (0.05) 0.80-0.93 0.35 (0.34) 0.00-1.00 0.92 (0.01) 0.91-0.93 0.59 (0.18) 0.36-1.00
56 0.90 (<.01) 0.90-0.91 0.92 (0.11) 0.78-1.00 0.86 (0.06) 0.80-0.91 0.38 (0.34) 0.20-0.89 0.90 (<.01) 0.90-0.91 0.49 (0.06) 0.40-0.56
58 0.79 (0.07) 0.64-0.85 0.62 (0.15) 0.40-0.83 0.79 (0.05) 0.73-0.85 0.21 (0.20) 0.00-0.60 0.80 (0.07) 0.70-0.91 0.52 (0.05) 0.50-0.65
61 0.70 (0.09) 0.54-0.83 0.46 (0.09) 0.33-0.62 0.59 (0.08) 0.46-0.73 0.54 (0.13) 0.33-0.74 0.74 (0.02) 0.70-0.75 0.48 (0.09) 0.33-0.63
63 0.90 (0.03) 0.82-0.91 0.53 (0.25) 0.10-1.00 0.78 (0.10) 0.64-1.00 0.40 (0.31) 0.00-1.00 0.90 (0.03) 0.80-0.91 0.57 (0.15) 0.50-1.00
66 0.77 (0.18) 0.45-0.91 0.48 (0.35) 0.00-1.00 0.52 (0.10) 0.36-0.73 0.60 (0.37) 0.00-1.00 0.77 (0.19) 0.45-1.00 0.35 (0.26) 0.00-1.00
67 0.93 (<.01) 0.93-0.93 0.77 (0.18) 0.50-0.92 0.88 (0.05) 0.79-0.93 0.30 (0.18) 0.00-0.62 0.92 (<.01) 0.92-0.93 0.45 (0.17) 0.08-0.67
68 0.77 (0.09) 0.64-0.82 0.47 (0.12) 0.33-0.61 0.68 (0.12) 0.55-0.82 0.49 (0.20) 0.28-0.67 0.81 (0.01) 0.80-0.82 0.50 (<.01) 0.50-0.50
71 0.91 (<.01) 0.91-0.91 0.57 (0.40) 0.00-1.00 0.71 (0.20) 0.45-1.00 0.42 (0.43) 0.00-1.00 0.90 (<.01) 0.90-0.91 0.53 (0.12) 0.40-0.90
72 0.93 (<.01) 0.92-0.93 0.56 (0.28) 0.00-1.00 0.83 (0.08) 0.62-0.93 0.48 (0.25) 0.15-1.00 0.92 (0.04) 0.85-1.00 0.53 (0.12) 0.33-0.83
73 0.89 (0.08) 0.69-0.93 0.49 (0.30) 0.00-1.00 0.93 (<.01) 0.92-0.93 0.64 (0.29) 0.00-0.92 0.93 (0.02) 0.92-1.00 0.40 (0.29) 0.00-1.00
74 0.91 (0.03) 0.86-0.93 0.58 (0.32) 0.08-1.00 0.89 (0.04) 0.86-0.93 0.43 (0.29) 0.00-0.88 0.93 (0.02) 0.92-1.00 0.64 (0.22) 0.25-1.00
77 0.89 (0.04) 0.80-0.90 0.24 (0.23) 0.00-0.67 0.89 (0.04) 0.80-0.90 0.71 (0.18) 0.44-1.00 0.89 (0.01) 0.88-0.90 0.50 (<.01) 0.50-0.50
78 0.88 (0.07) 0.73-0.91 0.29 (0.27) 0.00-0.65 0.86 (0.07) 0.73-0.91 0.58 (0.25) 0.20-0.85 0.91 (0.04) 0.90-1.00 0.50 (<.01) 0.50-0.50
81 0.70 (0.10) 0.57-0.83 0.63 (0.13) 0.44-0.82 0.67 (0.10) 0.50-0.83 0.36 (0.11) 0.21-0.58 0.81 (0.10) 0.60-0.90 0.59 (0.20) 0.35-0.88
82 0.77 (0.07) 0.69-0.92 0.41 (0.16) 0.22-0.73 0.75 (0.08) 0.58-0.91 0.63 (0.20) 0.34-1.00 0.81 (0.09) 0.69-0.92 0.53 (0.19) 0.23-1.00
84 0.85 (0.02) 0.85-0.92 0.73 (0.31) 0.14-1.00 0.85 (0.05) 0.77-0.92 0.43 (0.40) 0.00-1.00 0.83 (0.01) 0.82-0.85 0.61 (0.21) 0.27-0.95
85 0.69 (0.14) 0.38-0.85 0.49 (0.09) 0.33-0.64 0.77 (0.07) 0.62-0.85 0.56 (0.15) 0.27-0.73 0.83 (<.01) 0.83-0.85 0.50 (0.13) 0.15-0.80
86 0.89 (0.07) 0.77-0.93 0.17 (0.16) 0.00-0.54 0.92 (0.02) 0.86-0.93 0.64 (0.28) 0.15-0.92 0.93 (<.01) 0.92-0.93 0.39 (0.31) 0.00-0.77
87 0.47 (0.05) 0.36-0.55 0.55 (0.10) 0.40-0.72 0.47 (0.04) 0.45-0.55 0.46 (0.08) 0.33-0.62 0.47 (0.03) 0.45-0.55 0.47 (0.08) 0.37-0.67
88 0.45 (0.10) 0.40-0.60 0.36 (0.16) 0.24-0.60 0.42 (0.17) 0.20-0.60 0.52 (0.24) 0.28-0.76 0.51 (0.09) 0.40-0.62 0.48 (0.28) 0.16-0.80
6.2.1.1.4 Argument
(tmp %>% filter(outcome == "argument"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for argument
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
01 0.89 (0.07) 0.73-0.92 0.43 (0.31) 0.00-0.82 0.91 (<.01) 0.91-0.92 0.54 (0.28) 0.20-1.00 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
03 0.89 (0.04) 0.80-0.91 0.33 (0.37) 0.00-1.00 0.90 (<.01) 0.90-0.91 0.65 (0.34) 0.05-1.00 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
103 0.94 (<.01) 0.94-0.94 0.51 (0.29) 0.13-0.93 0.94 (<.01) 0.94-0.94 0.41 (0.25) 0.07-0.80 0.93 (<.01) 0.93-0.94 0.29 (0.19) 0.00-0.60
106 0.93 (0.03) 0.81-0.94 0.51 (0.29) 0.00-1.00 0.94 (<.01) 0.94-0.94 0.43 (0.29) 0.00-1.00 0.93 (<.01) 0.93-0.94 0.51 (0.39) 0.00-1.00
107 0.90 (0.08) 0.73-0.93 0.59 (0.35) 0.07-1.00 0.93 (<.01) 0.93-0.93 0.46 (0.34) 0.00-1.00 0.93 (<.01) 0.92-0.93 0.48 (0.26) 0.14-1.00
108 0.86 (0.02) 0.85-0.90 0.63 (0.05) 0.53-0.71 0.85 (<.01) 0.85-0.85 0.44 (0.08) 0.33-0.61 0.83 (0.02) 0.81-0.85 0.51 (0.16) 0.26-0.73
11 0.74 (0.04) 0.70-0.80 0.66 (0.30) 0.29-0.94 0.76 (0.04) 0.73-0.80 0.44 (0.16) 0.28-0.67 0.79 (0.01) 0.78-0.80 0.50 (<.01) 0.50-0.50
118 0.83 (0.10) 0.64-0.91 0.61 (0.30) 0.20-1.00 0.90 (0.03) 0.82-0.91 0.37 (0.27) 0.00-0.80 0.89 (0.02) 0.88-0.91 0.50 (<.01) 0.50-0.50
121 0.83 (0.17) 0.58-0.92 0.27 (0.20) 0.09-0.55 0.90 (0.04) 0.83-0.92 0.67 (0.25) 0.32-0.91 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
129 0.92 (0.04) 0.83-1.00 0.93 (0.10) 0.73-1.00 0.92 (<.01) 0.92-0.92 0.14 (0.23) 0.00-0.91 0.91 (<.01) 0.91-0.92 0.50 (<.01) 0.50-0.50
146 0.92 (0.05) 0.80-0.96 0.36 (0.28) 0.00-0.86 0.94 (<.01) 0.93-0.96 0.58 (0.35) 0.09-1.00 0.94 (<.01) 0.93-0.96 0.51 (0.29) 0.00-1.00
148 0.92 (<.01) 0.92-0.92 0.68 (0.36) 0.18-1.00 0.91 (0.02) 0.83-0.92 0.44 (0.25) 0.00-0.82 0.92 (0.03) 0.90-1.00 0.50 (<.01) 0.50-0.50
149 0.75 (0.02) 0.72-0.78 0.65 (0.08) 0.49-0.80 0.73 (0.02) 0.68-0.78 0.41 (0.07) 0.25-0.56 0.73 (0.03) 0.67-0.78 0.63 (0.14) 0.41-0.86
15 0.84 (0.09) 0.73-0.91 0.61 (0.37) 0.10-0.90 0.91 (<.01) 0.91-0.91 0.53 (0.28) 0.20-0.80 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
157 0.95 (0.01) 0.90-0.95 0.56 (0.25) 0.16-0.89 0.95 (<.01) 0.95-0.95 0.53 (0.28) 0.05-0.95 0.95 (0.01) 0.94-1.00 0.64 (0.27) 0.22-1.00
158 0.91 (0.03) 0.87-0.93 0.31 (0.28) 0.00-0.79 0.93 (<.01) 0.93-0.93 0.47 (0.34) 0.00-1.00 0.93 (<.01) 0.93-0.93 0.60 (0.28) 0.14-1.00
159 0.92 (0.03) 0.90-0.95 0.52 (0.26) 0.21-0.84 0.95 (0.01) 0.90-0.95 0.40 (0.24) 0.00-1.00 0.95 (<.01) 0.95-0.95 0.47 (0.34) 0.11-1.00
17 0.84 (0.04) 0.69-0.86 0.70 (0.17) 0.21-0.86 0.85 (<.01) 0.85-0.86 0.30 (0.25) 0.05-0.88 0.84 (<.01) 0.83-0.86 0.53 (0.15) 0.23-0.88
170 0.90 (0.11) 0.61-0.96 0.39 (0.27) 0.00-0.78 0.92 (0.04) 0.85-0.96 0.51 (0.21) 0.22-1.00 0.93 (0.02) 0.91-0.96 0.35 (0.30) 0.00-0.95
185 0.87 (0.02) 0.85-0.89 0.46 (0.18) 0.21-0.75 0.87 (0.02) 0.85-0.89 0.48 (0.18) 0.22-0.67 0.87 (0.02) 0.84-0.89 0.27 (0.07) 0.16-0.39
188 0.92 (0.02) 0.92-1.00 0.61 (0.41) 0.00-1.00 0.89 (0.05) 0.75-0.92 0.24 (0.22) 0.00-0.73 0.92 (<.01) 0.92-0.92 0.50 (<.01) 0.50-0.50
190 0.93 (<.01) 0.93-0.94 0.45 (0.30) 0.07-0.92 0.93 (<.01) 0.93-0.94 0.59 (0.29) 0.00-1.00 0.93 (<.01) 0.92-0.94 0.52 (0.28) 0.08-0.92
196 0.83 (<.01) 0.83-0.83 0.33 (0.10) 0.12-0.40 0.83 (0.02) 0.75-0.83 0.67 (0.12) 0.45-0.80 0.83 (<.01) 0.83-0.83 0.50 (<.01) 0.50-0.50
206 0.66 (0.04) 0.61-0.72 0.55 (0.08) 0.40-0.71 0.67 (<.01) 0.67-0.67 0.51 (0.08) 0.42-0.67 0.66 (0.02) 0.65-0.69 0.64 (0.13) 0.35-0.76
211 0.95 (0.03) 0.85-0.96 0.64 (0.17) 0.27-0.88 0.96 (<.01) 0.96-0.96 0.53 (0.17) 0.21-0.78 0.96 (<.01) 0.96-0.96 0.30 (0.29) 0.00-0.78
212 0.93 (0.05) 0.76-0.95 0.45 (0.30) 0.05-0.97 0.95 (<.01) 0.95-0.95 0.48 (0.24) 0.17-0.80 0.95 (<.01) 0.95-0.95 0.86 (0.11) 0.58-0.95
22 0.89 (0.06) 0.75-0.93 0.40 (0.19) 0.08-0.77 0.92 (0.02) 0.86-0.93 0.60 (0.18) 0.31-1.00 0.93 (0.04) 0.90-1.00 0.44 (0.13) 0.20-0.50
220 0.73 (0.05) 0.64-0.83 0.68 (0.23) 0.06-0.89 0.73 (0.03) 0.64-0.75 0.30 (0.16) 0.12-0.65 0.75 (0.07) 0.64-0.82 0.51 (0.03) 0.50-0.58
25 0.87 (0.09) 0.67-0.92 0.36 (0.41) 0.00-1.00 0.90 (0.03) 0.83-0.92 0.60 (0.37) 0.09-1.00 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
38 0.75 (0.05) 0.64-0.80 0.50 (0.21) 0.00-0.76 0.76 (0.03) 0.73-0.80 0.54 (0.23) 0.18-1.00 0.75 (0.07) 0.67-0.85 0.39 (0.18) 0.00-0.52
39 0.88 (0.08) 0.71-0.93 0.71 (0.24) 0.23-1.00 0.92 (0.02) 0.86-0.93 0.32 (0.15) 0.08-0.54 0.92 (<.01) 0.92-0.92 0.76 (0.25) 0.50-1.00
43 0.69 (0.07) 0.55-0.73 0.29 (0.18) 0.04-0.46 0.70 (0.04) 0.64-0.73 0.65 (0.18) 0.42-0.92 0.70 (<.01) 0.70-0.70 0.50 (<.01) 0.50-0.50
44 0.86 (0.09) 0.73-0.91 0.70 (0.35) 0.20-1.00 0.89 (0.05) 0.82-0.91 0.33 (0.33) 0.00-0.70 0.93 (0.05) 0.90-1.00 0.50 (<.01) 0.50-0.50
49 0.92 (<.01) 0.92-0.92 0.60 (0.27) 0.27-0.91 0.92 (<.01) 0.92-0.92 0.62 (0.19) 0.50-0.91 0.92 (<.01) 0.92-0.92 0.50 (<.01) 0.50-0.50
53 0.92 (0.03) 0.87-0.93 0.57 (0.31) 0.07-1.00 0.92 (0.02) 0.87-0.93 0.74 (0.27) 0.00-1.00 0.92 (0.01) 0.91-0.93 0.50 (0.19) 0.14-0.86
58 0.54 (0.11) 0.46-0.62 0.45 (0.25) 0.28-0.62 0.60 (0.02) 0.58-0.62 0.64 (0.14) 0.45-0.78 0.62 (0.06) 0.55-0.67 0.54 (0.09) 0.50-0.67
66 0.90 (0.02) 0.82-0.91 0.47 (0.35) 0.00-1.00 0.91 (0.04) 0.88-1.00 0.50 (<.01) 0.50-0.50
67 0.85 (0.03) 0.79-0.86 0.76 (0.23) 0.50-0.96 0.86 (<.01) 0.86-0.86 0.38 (0.27) 0.02-0.79
73 0.92 (0.02) 0.85-0.93 0.75 (0.21) 0.27-1.00 0.89 (0.04) 0.85-0.93 0.26 (0.16) 0.08-0.54 0.92 (<.01) 0.92-0.92 0.86 (0.20) 0.42-1.00
77 0.89 (0.04) 0.80-0.90 0.51 (0.33) 0.00-0.89 0.89 (0.04) 0.80-0.90 0.35 (0.32) 0.11-1.00 0.89 (0.01) 0.88-0.90 0.50 (<.01) 0.50-0.50
86 0.92 (0.02) 0.86-0.93 0.38 (0.25) 0.08-0.77 0.93 (<.01) 0.92-0.93 0.68 (0.28) 0.23-1.00 0.93 (<.01) 0.92-0.93 0.45 (0.29) 0.00-1.00
6.2.1.1.5 Tired
(tmp %>% filter(outcome == "tired"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for tired
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
01 0.91 (<.01) 0.91-0.92 0.34 (0.27) 0.00-0.80 0.85 (0.10) 0.64-0.92 0.54 (0.21) 0.15-0.82 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
02 0.77 (0.14) 0.54-0.92 0.61 (0.29) 0.18-1.00 0.63 (0.11) 0.46-0.83 0.47 (0.31) 0.00-0.92 0.64 (0.13) 0.50-0.83 0.56 (0.20) 0.18-0.82
03 0.38 (0.18) 0.10-0.60 0.19 (0.11) 0.10-0.39 0.62 (0.14) 0.45-0.80 0.46 (0.15) 0.33-0.70 0.74 (0.17) 0.50-0.91 0.56 (0.14) 0.44-0.78
05 0.90 (0.05) 0.75-0.92 0.40 (0.28) 0.00-0.91 0.90 (0.04) 0.83-0.92 0.31 (0.23) 0.00-0.79 0.92 (<.01) 0.91-0.92 0.53 (0.11) 0.50-0.91
08 0.62 (0.14) 0.42-0.75 0.47 (0.14) 0.33-0.70 0.61 (0.14) 0.42-0.92 0.56 (0.20) 0.19-0.81 0.57 (0.20) 0.25-0.75 0.41 (0.13) 0.17-0.56
09 0.89 (0.07) 0.73-0.92 0.59 (0.31) 0.10-1.00 0.90 (0.03) 0.83-0.92 0.58 (0.32) 0.09-1.00 0.91 (0.04) 0.89-1.00 0.50 (<.01) 0.50-0.50
10 0.60 (0.14) 0.33-0.75 0.59 (0.09) 0.43-0.74 0.67 (0.08) 0.50-0.75 0.41 (0.14) 0.19-0.67 0.69 (0.14) 0.50-0.90 0.60 (0.22) 0.44-1.00
103 0.60 (0.08) 0.38-0.69 0.57 (0.09) 0.40-0.77 0.61 (0.08) 0.44-0.75 0.47 (0.13) 0.28-0.71 0.61 (0.03) 0.56-0.64 0.41 (0.12) 0.24-0.60
105 0.53 (0.08) 0.40-0.62 0.54 (0.09) 0.39-0.67 0.56 (0.12) 0.38-0.71 0.49 (0.13) 0.28-0.68 0.56 (0.07) 0.47-0.67 0.56 (0.08) 0.46-0.69
106 0.60 (0.14) 0.25-0.81 0.60 (0.13) 0.32-0.78 0.68 (0.11) 0.44-0.81 0.28 (0.13) 0.13-0.45 0.60 (0.04) 0.50-0.62 0.59 (0.13) 0.43-0.87
107 0.77 (0.08) 0.53-0.80 0.72 (0.16) 0.42-0.89 0.78 (0.07) 0.67-0.93 0.23 (0.14) 0.08-0.62 0.77 (0.05) 0.67-0.80 0.60 (0.12) 0.43-0.83
108 0.69 (0.02) 0.65-0.70 0.49 (0.10) 0.29-0.63 0.64 (0.05) 0.50-0.70 0.48 (0.09) 0.35-0.63 0.66 (0.06) 0.47-0.70 0.52 (0.12) 0.32-0.80
11 0.48 (0.03) 0.45-0.50 0.50 (<.01) 0.50-0.50 0.47 (0.06) 0.40-0.55 0.45 (0.09) 0.37-0.56 0.41 (0.17) 0.22-0.60 0.38 (0.17) 0.15-0.52
111 0.88 (0.06) 0.70-0.90 0.35 (0.26) 0.00-0.78 0.83 (0.07) 0.70-1.00 0.63 (0.29) 0.00-1.00 0.90 (<.01) 0.89-0.90 0.50 (<.01) 0.50-0.50
112 0.77 (<.01) 0.77-0.77 0.62 (0.19) 0.28-0.93 0.79 (0.08) 0.69-0.92 0.38 (0.22) 0.03-0.78 0.78 (0.03) 0.75-0.83 0.53 (0.20) 0.03-0.83
113 0.89 (0.03) 0.80-0.90 0.83 (0.15) 0.61-1.00 0.88 (0.04) 0.80-0.90 0.15 (0.15) 0.00-0.44 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
118 0.72 (0.08) 0.64-0.82 0.49 (0.12) 0.33-0.71 0.66 (0.07) 0.55-0.73 0.47 (0.14) 0.28-0.71 0.65 (0.10) 0.44-0.75 0.44 (0.23) 0.12-0.75
119 0.40 (0.07) 0.29-0.50 0.38 (0.07) 0.29-0.46 0.46 (0.05) 0.36-0.50 0.51 (0.10) 0.35-0.69 0.45 (0.07) 0.36-0.57 0.44 (0.08) 0.27-0.54
121 0.77 (0.08) 0.67-0.83 0.64 (0.10) 0.50-0.75 0.71 (0.11) 0.58-0.83 0.32 (0.12) 0.15-0.45 0.81 (0.01) 0.80-0.82 0.51 (0.03) 0.50-0.56
123 0.91 (0.06) 0.73-0.93 0.43 (0.30) 0.07-1.00 0.83 (0.10) 0.67-1.00 0.53 (0.35) 0.00-0.93 0.90 (0.11) 0.53-0.93 0.43 (0.27) 0.00-0.79
124 0.84 (0.03) 0.82-0.90 0.71 (0.22) 0.31-1.00 0.78 (0.10) 0.50-0.90 0.37 (0.19) 0.11-0.75 0.88 (0.04) 0.82-0.90 0.51 (0.15) 0.11-0.78
126 0.84 (0.02) 0.83-0.92 0.64 (0.18) 0.35-0.90 0.83 (0.09) 0.67-1.00 0.25 (0.23) 0.00-0.70 0.82 (<.01) 0.82-0.83 0.50 (<.01) 0.50-0.50
129 0.67 (<.01) 0.67-0.67 0.63 (0.18) 0.50-0.88 0.74 (0.13) 0.50-0.92 0.21 (0.09) 0.06-0.44 0.65 (0.02) 0.64-0.67 0.50 (<.01) 0.50-0.50
133 0.90 (<.01) 0.90-0.90 0.56 (0.23) 0.11-0.78 0.90 (<.01) 0.90-0.90 0.32 (0.27) 0.11-0.89 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
135 0.60 (0.10) 0.29-0.71 0.38 (0.17) 0.11-0.67 0.55 (0.15) 0.21-0.79 0.48 (0.26) 0.11-0.93 0.55 (0.09) 0.43-0.69 0.46 (0.11) 0.31-0.60
146 0.64 (0.11) 0.47-0.76 0.53 (0.12) 0.25-0.76 0.59 (0.10) 0.35-0.73 0.45 (0.13) 0.29-0.70 0.65 (0.09) 0.44-0.74 0.44 (0.10) 0.23-0.63
148 0.39 (0.08) 0.25-0.50 0.34 (0.18) 0.11-0.71 0.39 (0.11) 0.25-0.58 0.64 (0.19) 0.37-0.89 0.44 (0.09) 0.36-0.60 0.39 (0.18) 0.08-0.50
149 0.47 (0.05) 0.44-0.63 0.52 (0.11) 0.27-0.76 0.49 (0.04) 0.42-0.58 0.45 (0.12) 0.30-0.71 0.45 (0.04) 0.40-0.53 0.53 (0.10) 0.36-0.70
15 0.91 (<.01) 0.91-0.91 0.60 (0.32) 0.20-0.90 0.91 (<.01) 0.91-0.91 0.51 (0.32) 0.15-0.90 0.88 (0.05) 0.80-0.90 0.46 (0.08) 0.33-0.50
150 0.88 (<.01) 0.88-0.88 0.58 (0.17) 0.32-0.91 0.85 (0.04) 0.76-0.88 0.32 (0.16) 0.17-0.71 0.86 (0.03) 0.77-0.88 0.52 (0.10) 0.40-0.67
152 0.71 (<.01) 0.71-0.72 0.46 (0.14) 0.17-0.62 0.71 (0.04) 0.67-0.79 0.50 (0.13) 0.35-0.76 0.71 (0.01) 0.68-0.72 0.57 (0.07) 0.46-0.69
154 0.88 (0.01) 0.83-0.89 0.58 (0.18) 0.27-0.77 0.84 (0.06) 0.71-0.94 0.44 (0.18) 0.19-0.73 0.87 (0.03) 0.81-0.94 0.49 (0.18) 0.07-0.72
155 0.69 (0.12) 0.28-0.72 0.53 (0.07) 0.38-0.65 0.61 (0.06) 0.56-0.72 0.53 (0.13) 0.34-0.75 0.69 (0.05) 0.59-0.76 0.55 (0.15) 0.28-0.79
156 0.86 (<.01) 0.86-0.86 0.59 (0.18) 0.39-0.93 0.83 (0.04) 0.76-0.86 0.44 (0.10) 0.22-0.54 0.86 (0.02) 0.84-0.90 0.69 (0.14) 0.51-0.88
157 0.56 (0.12) 0.45-0.76 0.63 (0.10) 0.50-0.79 0.48 (0.08) 0.35-0.62 0.41 (0.09) 0.27-0.56 0.44 (0.07) 0.32-0.67 0.41 (0.14) 0.09-0.60
158 0.51 (0.13) 0.33-0.80 0.57 (0.17) 0.23-0.82 0.55 (0.13) 0.33-0.73 0.47 (0.08) 0.34-0.64 0.51 (0.10) 0.40-0.71 0.68 (0.06) 0.57-0.79
159 0.70 (0.10) 0.55-0.79 0.66 (0.10) 0.53-0.82 0.76 (0.03) 0.70-0.79 0.44 (0.11) 0.29-0.60 0.75 (0.03) 0.72-0.79 0.59 (0.19) 0.30-0.90
160 0.46 (0.07) 0.28-0.56 0.36 (0.08) 0.21-0.51 0.43 (0.06) 0.33-0.50 0.65 (0.10) 0.48-0.80 0.48 (0.03) 0.41-0.50 0.36 (0.10) 0.22-0.57
162 0.85 (0.02) 0.79-0.86 0.70 (0.16) 0.35-0.91 0.85 (0.02) 0.79-0.86 0.32 (0.13) 0.17-0.56 0.85 (0.04) 0.80-0.91 0.55 (0.12) 0.33-0.77
164 0.75 (0.05) 0.61-0.78 0.43 (0.08) 0.33-0.50 0.73 (0.04) 0.65-0.78 0.53 (0.07) 0.42-0.68 0.74 (0.05) 0.65-0.81 0.58 (0.08) 0.44-0.71
165 0.87 (0.05) 0.82-0.91 0.43 (0.34) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.53 (0.25) 0.10-1.00 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
166 0.74 (0.08) 0.58-0.92 0.60 (0.10) 0.41-0.78 0.77 (0.08) 0.67-0.92 0.38 (0.11) 0.22-0.57 0.81 (0.02) 0.75-0.82 0.48 (0.06) 0.28-0.50
167 0.82 (<.01) 0.82-0.82 0.41 (0.10) 0.22-0.50 0.75 (0.10) 0.64-0.91 0.55 (0.18) 0.33-0.83 0.79 (0.10) 0.70-0.90 0.50 (0.01) 0.44-0.50
168 0.60 (0.14) 0.38-0.85 0.65 (0.22) 0.21-1.00 0.66 (0.15) 0.38-0.85 0.32 (0.14) 0.14-0.57 0.58 (0.15) 0.33-0.85 0.62 (0.17) 0.36-0.93
169 0.94 (0.02) 0.89-0.95 0.76 (0.27) 0.33-1.00 0.94 (<.01) 0.94-0.95 0.28 (0.22) 0.00-0.58 0.95 (0.02) 0.93-1.00 0.53 (0.35) 0.07-1.00
17 0.60 (0.08) 0.38-0.64 0.38 (0.10) 0.27-0.55 0.63 (0.04) 0.54-0.69 0.51 (0.13) 0.33-0.64 0.60 (0.05) 0.43-0.62 0.43 (0.18) 0.05-0.60
170 0.73 (0.04) 0.69-0.79 0.55 (0.13) 0.31-0.78 0.71 (0.06) 0.61-0.84 0.46 (0.13) 0.26-0.67 0.73 (0.07) 0.61-0.92 0.56 (0.15) 0.40-0.85
171 0.96 (<.01) 0.96-0.96 0.66 (0.26) 0.17-1.00 0.96 (<.01) 0.96-0.96 0.41 (0.28) 0.00-0.75 0.96 (0.01) 0.95-1.00 0.47 (0.34) 0.00-0.98
174 0.96 (<.01) 0.96-0.96 0.52 (0.25) 0.08-1.00 0.96 (<.01) 0.96-0.96 0.60 (0.29) 0.04-0.92 0.97 (0.02) 0.94-1.00 0.60 (0.36) 0.09-0.94
177 0.81 (0.10) 0.69-0.92 0.29 (0.17) 0.08-0.50 0.92 (<.01) 0.92-0.92 0.66 (0.26) 0.29-0.92 0.91 (<.01) 0.91-0.92 0.27 (0.27) 0.00-0.50
18 0.43 (0.07) 0.37-0.58 0.49 (0.06) 0.38-0.59 0.53 (0.08) 0.42-0.63 0.45 (0.05) 0.37-0.52 0.56 (0.12) 0.37-0.75 0.58 (0.11) 0.39-0.71
180 0.84 (0.17) 0.36-0.91 0.57 (0.31) 0.20-0.90 0.83 (0.08) 0.73-1.00 0.32 (0.23) 0.00-0.70 0.65 (0.31) 0.09-0.91 0.53 (0.14) 0.30-0.90
181 0.83 (0.13) 0.55-1.00 0.51 (0.35) 0.00-1.00 0.88 (0.04) 0.82-0.91 0.55 (0.35) 0.00-1.00 0.90 (0.03) 0.89-1.00 0.46 (0.14) 0.00-0.50
185 0.76 (0.08) 0.53-0.80 0.56 (0.18) 0.06-0.76 0.72 (0.09) 0.55-0.85 0.42 (0.09) 0.24-0.66 0.70 (0.14) 0.39-0.80 0.62 (0.17) 0.16-0.80
186 0.93 (0.02) 0.87-0.93 0.55 (0.19) 0.14-0.79 0.93 (<.01) 0.93-0.93 0.47 (0.22) 0.21-0.93 0.93 (<.01) 0.92-0.93 0.29 (0.24) 0.00-0.71
187 0.94 (0.01) 0.90-0.95 0.46 (0.22) 0.13-0.88 0.94 (0.01) 0.90-0.95 0.56 (0.20) 0.12-0.81 0.94 (<.01) 0.92-0.95 0.56 (0.23) 0.22-0.93
188 0.66 (0.08) 0.50-0.83 0.57 (0.14) 0.34-0.78 0.60 (0.06) 0.50-0.67 0.46 (0.14) 0.25-0.81 0.66 (0.06) 0.50-0.75 0.56 (0.18) 0.12-0.81
189 0.90 (0.04) 0.75-0.92 0.59 (0.33) 0.00-1.00 0.91 (0.02) 0.83-0.92 0.23 (0.23) 0.00-0.82 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
190 0.60 (0.11) 0.36-0.71 0.50 (0.12) 0.28-0.78 0.66 (0.08) 0.53-0.86 0.35 (0.09) 0.22-0.56 0.62 (0.07) 0.53-0.69 0.51 (0.12) 0.24-0.64
192 0.62 (0.12) 0.31-0.77 0.45 (0.17) 0.19-0.67 0.65 (0.04) 0.62-0.69 0.60 (0.19) 0.35-0.83 0.66 (0.07) 0.54-0.77 0.58 (0.06) 0.53-0.75
195 0.50 (0.04) 0.46-0.53 0.53 (0.08) 0.39-0.67 0.54 (0.09) 0.38-0.71 0.48 (0.09) 0.29-0.62 0.48 (0.10) 0.40-0.64 0.51 (0.12) 0.38-0.71
196 0.74 (0.02) 0.67-0.75 0.46 (0.06) 0.37-0.59 0.64 (0.10) 0.42-0.75 0.45 (0.14) 0.24-0.81 0.67 (0.09) 0.55-0.75 0.46 (0.08) 0.33-0.59
20 0.42 (0.02) 0.36-0.43 0.60 (0.10) 0.42-0.73 0.43 (0.03) 0.36-0.50 0.31 (0.07) 0.21-0.44 0.45 (0.03) 0.36-0.50 0.41 (0.10) 0.23-0.52
201 0.82 (<.01) 0.82-0.82 0.57 (0.21) 0.28-0.83 0.81 (<.01) 0.80-0.82 0.50 (<.01) 0.50-0.50
206 0.73 (0.08) 0.50-0.78 0.33 (0.15) 0.16-0.64 0.75 (0.05) 0.72-0.89 0.62 (0.17) 0.32-0.84 0.75 (0.02) 0.71-0.76 0.57 (0.10) 0.37-0.73
207 0.72 (0.13) 0.50-0.85 0.24 (0.19) 0.00-0.64 0.56 (0.09) 0.43-0.71 0.81 (0.23) 0.29-1.00 0.80 (0.10) 0.54-0.85 0.69 (0.29) 0.23-1.00
21 0.34 (0.04) 0.27-0.47 0.57 (0.09) 0.44-0.72 0.47 (0.07) 0.40-0.60 0.44 (0.07) 0.32-0.56 0.40 (0.11) 0.21-0.57 0.48 (0.12) 0.33-0.80
211 0.66 (0.16) 0.41-0.96 0.45 (0.33) 0.00-0.88 0.53 (0.15) 0.27-0.81 0.58 (0.36) 0.08-1.00 0.67 (0.15) 0.42-0.92 0.65 (0.29) 0.20-1.00
212 0.80 (0.01) 0.76-0.81 0.47 (0.09) 0.33-0.62 0.76 (0.06) 0.65-0.81 0.54 (0.15) 0.26-0.73 0.79 (0.01) 0.75-0.80 0.34 (0.10) 0.13-0.50
214 0.85 (0.07) 0.62-0.88 0.64 (0.19) 0.34-0.93 0.85 (0.04) 0.75-0.88 0.53 (0.19) 0.21-0.75 0.85 (0.02) 0.82-0.88 0.42 (0.16) 0.08-0.71
216 0.96 (<.01) 0.93-0.96 0.16 (0.18) 0.00-0.63 0.96 (0.02) 0.89-0.96 0.72 (0.16) 0.42-0.88 0.96 (<.01) 0.96-0.96 0.34 (0.25) 0.00-0.73
22 0.51 (0.02) 0.50-0.58 0.37 (0.10) 0.22-0.56 0.48 (0.05) 0.42-0.58 0.53 (0.20) 0.19-0.78 0.44 (0.06) 0.36-0.54 0.48 (0.06) 0.31-0.55
220 0.46 (0.15) 0.17-0.73 0.45 (0.15) 0.11-0.63 0.57 (0.14) 0.33-0.75 0.45 (0.16) 0.29-0.80 0.47 (0.09) 0.27-0.55 0.50 (0.11) 0.29-0.67
221 0.95 (<.01) 0.95-0.95 0.31 (0.15) 0.14-0.61 0.95 (<.01) 0.95-0.95 0.64 (0.14) 0.39-0.92 0.97 (0.03) 0.95-1.00 0.32 (0.12) 0.20-0.55
23 0.31 (0.05) 0.29-0.43 0.49 (0.06) 0.36-0.53 0.36 (0.08) 0.21-0.43 0.57 (0.12) 0.45-0.74 0.33 (0.11) 0.23-0.50 0.36 (0.18) 0.20-0.60
25 0.17 (<.01) 0.17-0.17 0.53 (0.12) 0.33-0.70 0.33 (0.14) 0.08-0.50 0.48 (0.09) 0.35-0.62 0.31 (0.18) 0.17-0.50 0.65 (0.19) 0.50-0.94
26 0.93 (<.01) 0.93-0.94 0.61 (0.26) 0.15-1.00 0.92 (0.02) 0.88-0.94 0.29 (0.26) 0.00-0.70 0.90 (0.04) 0.85-0.94 0.45 (0.29) 0.08-0.93
27 0.52 (0.18) 0.17-0.82 0.45 (0.11) 0.22-0.67 0.52 (0.11) 0.33-0.67 0.55 (0.13) 0.30-0.89 0.64 (0.14) 0.36-0.82 0.41 (0.23) 0.06-0.72
30 0.91 (0.05) 0.77-1.00 0.52 (0.35) 0.00-1.00 0.92 (0.04) 0.85-1.00 0.47 (0.32) 0.00-1.00 0.92 (<.01) 0.92-0.93 0.58 (0.30) 0.00-1.00
31 0.75 (0.05) 0.64-0.79 0.55 (0.17) 0.31-0.85 0.69 (0.09) 0.50-0.86 0.47 (0.13) 0.24-0.62 0.77 (<.01) 0.77-0.79 0.32 (0.17) 0.10-0.58
32 0.54 (0.12) 0.36-0.79 0.58 (0.11) 0.29-0.69 0.55 (0.10) 0.36-0.71 0.39 (0.11) 0.24-0.64 0.53 (0.04) 0.46-0.62 0.64 (0.11) 0.50-0.81
35 0.62 (0.17) 0.33-0.75 0.50 (0.25) 0.19-0.85 0.52 (0.15) 0.42-0.83 0.49 (0.23) 0.07-0.81 0.54 (0.15) 0.36-0.82 0.44 (0.13) 0.28-0.67
36 0.89 (0.10) 0.55-0.92 0.47 (0.37) 0.00-1.00 0.75 (0.12) 0.55-0.92 0.54 (0.29) 0.10-1.00 0.93 (0.07) 0.73-1.00 0.48 (0.07) 0.30-0.50
38 0.75 (0.15) 0.36-0.87 0.55 (0.15) 0.31-0.83 0.68 (0.12) 0.45-0.87 0.51 (0.17) 0.29-0.92 0.82 (0.10) 0.67-1.00 0.43 (0.21) 0.00-0.71
40 0.90 (0.03) 0.82-0.91 0.37 (0.31) 0.00-0.90 0.90 (0.03) 0.82-0.91 0.55 (0.30) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.50 (<.01) 0.50-0.50
42 0.91 (<.01) 0.91-0.91 0.69 (0.13) 0.55-0.80 0.86 (0.05) 0.82-0.91 0.45 (0.29) 0.10-0.80 0.90 (<.01) 0.90-0.91 0.58 (0.21) 0.44-0.89
43 0.86 (0.13) 0.64-1.00 0.44 (0.45) 0.00-1.00 0.88 (0.04) 0.82-0.91 0.64 (0.38) 0.10-1.00 0.90 (<.01) 0.90-0.90 0.50 (<.01) 0.50-0.50
44 0.55 (<.01) 0.55-0.55 0.73 (0.07) 0.70-0.83 0.59 (0.09) 0.55-0.73 0.37 (0.10) 0.23-0.47 0.52 (0.03) 0.50-0.55 0.50 (<.01) 0.50-0.50
49 0.56 (0.07) 0.45-0.67 0.62 (0.11) 0.45-0.75 0.55 (0.10) 0.45-0.67 0.42 (0.13) 0.26-0.66 0.59 (<.01) 0.58-0.60 0.51 (0.03) 0.50-0.57
51 0.83 (<.01) 0.83-0.83 0.62 (0.28) 0.30-0.90 0.83 (<.01) 0.82-0.83 0.40 (0.21) 0.20-0.78 0.81 (0.01) 0.80-0.83 0.50 (<.01) 0.50-0.50
52 0.88 (0.06) 0.73-0.91 0.55 (0.29) 0.00-0.90 0.86 (0.07) 0.73-1.00 0.42 (0.31) 0.00-1.00 0.93 (0.05) 0.89-1.00 0.48 (0.06) 0.30-0.50
53 0.86 (0.03) 0.80-0.87 0.48 (0.19) 0.21-0.79 0.84 (0.04) 0.73-0.87 0.44 (0.18) 0.20-0.70 0.88 (0.06) 0.82-0.93 0.38 (0.16) 0.07-0.50
56 0.88 (0.05) 0.80-0.91 0.50 (0.05) 0.44-0.56 0.76 (0.10) 0.70-0.91 0.54 (0.38) 0.00-0.89 0.90 (<.01) 0.90-0.91 0.49 (0.03) 0.44-0.50
58 0.82 (0.07) 0.67-0.91 0.59 (0.16) 0.35-0.83 0.71 (0.10) 0.55-0.83 0.59 (0.22) 0.27-0.85 0.81 (0.02) 0.80-0.83 0.54 (0.11) 0.50-0.80
63 0.91 (<.01) 0.91-0.91 0.48 (0.08) 0.20-0.50 0.73 (0.11) 0.55-1.00 0.52 (0.28) 0.00-1.00 0.90 (0.02) 0.82-0.91 0.52 (0.16) 0.20-0.90
67 0.93 (<.01) 0.93-0.93 0.48 (0.21) 0.23-0.85 0.77 (0.12) 0.57-0.93 0.62 (0.17) 0.31-0.85 0.91 (0.04) 0.77-0.93 0.59 (0.33) 0.08-1.00
68 0.91 (<.01) 0.91-0.91 0.81 (0.28) 0.40-1.00 0.80 (0.11) 0.64-0.91 0.25 (0.19) 0.10-0.50 0.90 (<.01) 0.90-0.91 0.60 (0.20) 0.50-0.90
71 0.57 (0.06) 0.45-0.64 0.58 (0.08) 0.46-0.68 0.56 (0.08) 0.45-0.73 0.45 (0.14) 0.07-0.61 0.70 (0.02) 0.64-0.73 0.53 (0.07) 0.50-0.71
72 0.92 (0.02) 0.85-0.93 0.35 (0.30) 0.00-1.00 0.93 (<.01) 0.92-0.93 0.59 (0.30) 0.08-1.00 0.92 (<.01) 0.92-0.93 0.43 (0.22) 0.08-0.92
73 0.83 (0.09) 0.54-0.93 0.53 (0.16) 0.36-0.92 0.81 (0.08) 0.69-0.93 0.45 (0.15) 0.17-0.64 0.85 (<.01) 0.85-0.85 0.40 (0.21) 0.14-0.77
74 0.92 (0.05) 0.79-1.00 0.60 (0.37) 0.00-1.00 0.91 (0.04) 0.86-1.00 0.42 (0.33) 0.00-1.00 0.93 (0.03) 0.92-1.00 0.57 (0.31) 0.00-1.00
77 0.87 (0.05) 0.80-0.90 0.46 (0.27) 0.11-0.89 0.90 (<.01) 0.90-0.90 0.49 (0.34) 0.00-1.00 0.89 (0.01) 0.88-0.90 0.50 (<.01) 0.50-0.50
81 0.89 (0.03) 0.86-0.92 0.84 (0.13) 0.67-1.00 0.82 (0.07) 0.71-0.91 0.20 (0.14) 0.09-0.44 0.86 (0.03) 0.82-0.90 0.47 (0.17) 0.14-0.65
84 0.90 (0.05) 0.77-0.92 0.50 (0.26) 0.08-1.00 0.91 (0.03) 0.85-0.92 0.42 (0.25) 0.00-0.83 0.91 (0.03) 0.85-0.92 0.59 (0.24) 0.21-1.00
86 0.90 (0.07) 0.71-0.93 0.34 (0.24) 0.00-0.75 0.93 (<.01) 0.92-0.93 0.53 (0.31) 0.08-1.00 0.92 (0.02) 0.86-0.93 0.54 (0.35) 0.08-1.00
87 0.30 (0.08) 0.27-0.55 0.32 (0.26) 0.00-0.67 0.29 (0.14) 0.00-0.45 0.64 (0.20) 0.29-1.00 0.30 (0.12) 0.09-0.64 0.51 (0.22) 0.12-0.79
88 0.83 (0.05) 0.80-0.90 0.48 (0.36) 0.00-0.88 0.72 (0.10) 0.60-0.80 0.55 (0.26) 0.31-0.81 0.90 (0.12) 0.80-1.00 0.50 (<.01) 0.50-0.50
6.2.1.1.6 Sick
(tmp %>% filter(outcome == "sick"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for sick
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
02 0.92 (<.01) 0.92-0.92 0.41 (0.34) 0.00-1.00 0.92 (<.01) 0.92-0.92 0.56 (0.34) 0.08-1.00 0.92 (0.03) 0.83-1.00 0.48 (0.12) 0.09-0.64
03 0.90 (<.01) 0.90-0.91 0.36 (0.38) 0.00-0.90 0.90 (<.01) 0.90-0.91 0.51 (0.42) 0.00-1.00 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
08 0.88 (0.04) 0.83-0.92 0.51 (0.30) 0.00-0.82 0.92 (<.01) 0.92-0.92 0.39 (0.30) 0.00-0.91 0.92 (0.03) 0.91-1.00 0.50 (<.01) 0.50-0.50
10 0.81 (0.15) 0.50-0.92 0.57 (0.32) 0.09-1.00 0.88 (0.05) 0.82-0.92 0.41 (0.32) 0.00-0.91 0.90 (<.01) 0.89-0.92 0.61 (0.29) 0.11-1.00
103 0.48 (0.14) 0.31-0.69 0.47 (0.15) 0.23-0.70 0.56 (0.06) 0.44-0.62 0.63 (0.12) 0.37-0.77 0.51 (0.11) 0.38-0.62 0.52 (0.07) 0.44-0.65
105 0.89 (0.06) 0.76-0.94 0.54 (0.29) 0.21-1.00 0.93 (0.02) 0.85-0.94 0.44 (0.32) 0.00-1.00 0.93 (0.02) 0.92-1.00 0.43 (0.30) 0.07-1.00
106 0.92 (0.05) 0.81-0.94 0.47 (0.36) 0.00-1.00 0.94 (<.01) 0.94-0.94 0.56 (0.31) 0.07-1.00 0.93 (<.01) 0.93-0.94 0.50 (0.33) 0.07-1.00
107 0.79 (0.12) 0.60-0.93 0.50 (0.30) 0.00-1.00 0.49 (0.11) 0.27-0.67 0.51 (0.30) 0.00-1.00 0.86 (0.11) 0.62-1.00 0.43 (0.25) 0.00-0.79
108 0.95 (<.01) 0.95-0.95 0.56 (0.30) 0.00-0.95 0.95 (0.01) 0.90-0.95 0.42 (0.34) 0.00-1.00 0.96 (0.02) 0.94-1.00 0.44 (0.24) 0.00-0.93
11 0.64 (0.21) 0.40-0.91 0.58 (0.21) 0.30-0.80 0.88 (0.04) 0.82-0.91 0.18 (0.09) 0.11-0.30 0.89 (<.01) 0.89-0.90 0.43 (0.14) 0.22-0.50
118 0.84 (0.08) 0.73-0.91 0.38 (0.27) 0.00-0.90 0.86 (0.05) 0.80-0.91 0.45 (0.24) 0.00-0.80 0.91 (0.04) 0.88-1.00 0.50 (<.01) 0.50-0.50
121 0.92 (<.01) 0.92-0.92 0.47 (0.34) 0.09-0.77 0.90 (0.04) 0.83-0.92 0.55 (0.07) 0.45-0.64 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
126 0.92 (0.02) 0.92-1.00 0.73 (0.22) 0.45-1.00 0.84 (0.10) 0.67-1.00 0.39 (0.21) 0.00-0.73 0.90 (0.02) 0.82-0.92 0.41 (0.11) 0.20-0.50
129 0.76 (0.12) 0.67-0.92 0.92 (0.17) 0.36-1.00 0.67 (<.01) 0.67-0.67 0.13 (0.16) 0.00-0.52 0.65 (0.02) 0.64-0.67 0.50 (<.01) 0.50-0.50
135 0.48 (0.23) 0.14-0.93 0.78 (0.13) 0.58-1.00 0.60 (0.07) 0.50-0.71 0.37 (0.15) 0.15-0.69 0.46 (0.40) 0.07-0.93 0.46 (0.26) 0.00-0.85
149 0.78 (<.01) 0.78-0.79 0.43 (0.19) 0.20-0.80 0.78 (0.03) 0.72-0.83 0.58 (0.14) 0.35-0.89 0.79 (0.01) 0.78-0.81 0.59 (0.16) 0.32-0.87
15 0.64 (0.07) 0.55-0.73 0.66 (0.03) 0.62-0.68 0.48 (0.11) 0.36-0.64 0.38 (0.04) 0.32-0.43 0.50 (0.14) 0.30-0.60 0.44 (0.12) 0.29-0.58
152 0.78 (0.04) 0.67-0.80 0.47 (0.11) 0.33-0.67 0.80 (<.01) 0.79-0.80 0.45 (0.09) 0.26-0.55 0.79 (0.01) 0.77-0.80 0.52 (0.12) 0.35-0.79
155 0.66 (0.16) 0.33-0.83 0.67 (0.11) 0.46-0.84 0.77 (0.02) 0.72-0.78 0.51 (0.17) 0.25-0.66 0.67 (0.15) 0.39-0.78 0.46 (0.06) 0.36-0.60
157 0.95 (0.02) 0.90-0.95 0.14 (0.08) 0.05-0.25 0.95 (<.01) 0.95-0.95 0.83 (0.13) 0.62-1.00 0.95 (<.01) 0.95-0.95 0.27 (0.20) 0.00-0.60
158 0.93 (<.01) 0.93-0.93 0.56 (0.30) 0.00-1.00 0.93 (<.01) 0.93-0.93 0.41 (0.31) 0.00-0.86 0.93 (<.01) 0.93-0.93 0.50 (0.30) 0.07-0.92
159 0.86 (0.16) 0.50-0.95 0.48 (0.29) 0.06-0.94 0.91 (0.03) 0.85-0.95 0.56 (0.27) 0.11-0.92 0.91 (0.02) 0.89-0.95 0.55 (0.14) 0.33-0.78
160 0.89 (<.01) 0.89-0.89 0.27 (0.16) 0.00-0.56 0.89 (<.01) 0.89-0.89 0.78 (0.14) 0.38-0.94 0.89 (<.01) 0.88-0.89 0.47 (0.16) 0.22-0.84
162 0.93 (<.01) 0.92-0.93 0.59 (0.26) 0.17-0.92 0.92 (0.02) 0.86-0.93 0.43 (0.24) 0.08-0.77 0.92 (0.03) 0.90-1.00 0.46 (0.26) 0.00-0.85
164 0.96 (<.01) 0.96-0.96 0.56 (0.28) 0.05-1.00 0.95 (0.01) 0.91-0.96 0.41 (0.33) 0.00-1.00 0.95 (<.01) 0.95-0.96 0.51 (0.34) 0.00-1.00
167 0.90 (0.02) 0.82-0.91 0.49 (0.17) 0.10-0.70 0.91 (<.01) 0.91-0.91 0.40 (0.11) 0.20-0.60 0.94 (0.05) 0.90-1.00 0.50 (<.01) 0.50-0.50
168 0.65 (0.06) 0.62-0.77 0.69 (0.15) 0.33-0.83 0.77 (0.10) 0.62-0.92 0.14 (0.14) 0.00-0.39 0.62 (0.20) 0.25-0.83 0.68 (0.10) 0.52-0.92
170 0.69 (0.10) 0.50-0.80 0.41 (0.15) 0.03-0.58 0.64 (0.10) 0.46-0.77 0.61 (0.24) 0.29-1.00 0.76 (0.03) 0.69-0.83 0.48 (0.21) 0.10-0.85
18 0.57 (0.21) 0.16-0.84 0.48 (0.12) 0.29-0.73 0.70 (0.08) 0.58-0.84 0.54 (0.14) 0.14-0.69 0.54 (0.26) 0.12-0.88 0.36 (0.20) 0.18-0.83
180 0.50 (0.11) 0.36-0.73 0.47 (0.12) 0.30-0.67 0.50 (0.13) 0.18-0.73 0.43 (0.16) 0.27-0.80 0.50 (0.19) 0.18-0.80 0.44 (0.24) 0.03-0.75
181 0.90 (0.02) 0.82-0.91 0.52 (0.23) 0.15-0.90 0.90 (0.02) 0.82-0.91 0.51 (0.29) 0.00-0.90 0.90 (<.01) 0.89-0.90 0.50 (<.01) 0.50-0.50
185 0.86 (0.10) 0.58-0.90 0.46 (0.12) 0.25-0.71 0.86 (0.04) 0.80-0.90 0.45 (0.20) 0.21-0.81 0.89 (<.01) 0.89-0.90 0.54 (0.24) 0.17-0.94
189 0.90 (0.03) 0.83-0.92 0.60 (0.22) 0.27-0.91 0.92 (<.01) 0.92-0.92 0.38 (0.22) 0.09-0.73 0.91 (<.01) 0.90-0.92 0.50 (<.01) 0.50-0.50
190 0.70 (0.06) 0.60-0.80 0.45 (0.10) 0.25-0.60 0.75 (0.04) 0.71-0.80 0.53 (0.12) 0.28-0.72 0.74 (0.05) 0.69-0.80 0.49 (0.16) 0.31-0.83
192 0.73 (0.11) 0.54-0.92 0.63 (0.21) 0.23-0.97 0.77 (0.06) 0.69-0.85 0.40 (0.13) 0.22-0.73 0.65 (0.20) 0.23-0.85 0.64 (0.23) 0.30-0.90
196 0.70 (0.22) 0.33-0.92 0.62 (0.31) 0.00-1.00 0.88 (0.08) 0.75-1.00 0.38 (0.34) 0.00-0.91 0.90 (0.04) 0.75-0.92 0.53 (0.11) 0.50-0.91
20 0.89 (0.06) 0.71-0.93 0.42 (0.32) 0.00-1.00 0.92 (0.02) 0.86-0.93 0.55 (0.35) 0.00-1.00 0.92 (<.01) 0.91-0.93 0.38 (0.14) 0.08-0.50
201 0.91 (<.01) 0.91-0.91 0.63 (0.41) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.49 (0.39) 0.00-0.95 0.91 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
206 0.89 (0.03) 0.83-0.94 0.70 (0.24) 0.23-1.00 0.89 (<.01) 0.89-0.89 0.38 (0.20) 0.09-0.73 0.73 (0.28) 0.06-0.94 0.51 (0.18) 0.06-0.75
21 0.86 (0.02) 0.80-0.87 0.77 (0.20) 0.46-1.00 0.92 (0.06) 0.80-1.00 0.18 (0.20) 0.00-0.46 0.86 (<.01) 0.86-0.87 0.80 (0.19) 0.46-1.00
211 0.94 (0.03) 0.88-0.96 0.68 (0.17) 0.31-0.92 0.96 (<.01) 0.96-0.96 0.15 (0.08) 0.04-0.33 0.96 (<.01) 0.96-0.96 0.53 (0.25) 0.04-0.78
214 0.94 (<.01) 0.94-0.94 0.61 (0.35) 0.00-1.00 0.93 (0.02) 0.88-0.94 0.37 (0.26) 0.07-1.00 0.93 (0.02) 0.91-1.00 0.59 (0.25) 0.00-0.93
22 0.80 (0.03) 0.79-0.86 0.57 (0.27) 0.15-0.88 0.73 (0.06) 0.67-0.79 0.43 (0.11) 0.18-0.56 0.82 (0.05) 0.73-0.85 0.74 (0.15) 0.50-0.91
25 0.92 (<.01) 0.92-0.92 0.36 (0.40) 0.00-0.91 0.86 (0.04) 0.83-0.92 0.60 (0.38) 0.00-1.00 0.91 (<.01) 0.90-0.92 0.45 (0.12) 0.18-0.50
27 0.57 (0.15) 0.25-0.82 0.61 (0.15) 0.31-0.87 0.54 (0.20) 0.18-0.75 0.41 (0.23) 0.15-0.71 0.55 (0.10) 0.36-0.73 0.48 (0.16) 0.27-0.74
28 0.92 (0.02) 0.86-0.93 0.36 (0.26) 0.00-0.85 0.93 (<.01) 0.93-0.93 0.54 (0.27) 0.08-0.92 0.92 (<.01) 0.92-0.93 0.45 (0.37) 0.00-1.00
31 0.92 (0.02) 0.86-0.93 0.50 (0.26) 0.00-0.85 0.82 (0.09) 0.64-0.93 0.41 (0.09) 0.31-0.62 0.92 (0.02) 0.86-0.93 0.50 (0.22) 0.23-0.83
32 0.92 (0.04) 0.79-0.93 0.49 (0.26) 0.15-1.00 0.92 (0.02) 0.86-0.93 0.51 (0.26) 0.08-0.85 0.93 (<.01) 0.92-0.93 0.74 (0.20) 0.50-1.00
35 0.83 (0.13) 0.58-0.92 0.44 (0.18) 0.05-0.55 0.63 (0.13) 0.42-0.75 0.50 (0.28) 0.09-0.95 0.82 (0.07) 0.73-0.91 0.40 (0.32) 0.00-0.80
38 0.84 (0.10) 0.64-0.93 0.57 (0.25) 0.14-0.90 0.88 (0.08) 0.73-0.93 0.45 (0.28) 0.04-0.93 0.93 (0.05) 0.89-1.00 0.59 (0.25) 0.09-1.00
40 0.91 (<.01) 0.91-0.91 0.51 (0.34) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.49 (0.35) 0.10-1.00 0.91 (<.01) 0.91-0.91 0.48 (0.08) 0.20-0.50
43 0.52 (0.18) 0.18-0.64 0.71 (0.24) 0.23-0.92 0.43 (0.15) 0.18-0.55 0.34 (0.19) 0.04-0.54 0.24 (0.08) 0.20-0.40 0.56 (0.09) 0.50-0.69
51 0.48 (0.09) 0.33-0.64 0.45 (0.10) 0.27-0.67 0.48 (0.13) 0.27-0.64 0.57 (0.15) 0.33-0.80 0.47 (0.10) 0.36-0.75 0.44 (0.16) 0.17-0.86
63 0.90 (0.04) 0.82-1.00 0.59 (0.30) 0.00-1.00 0.90 (0.03) 0.82-0.91 0.50 (0.31) 0.00-1.00 0.91 (0.03) 0.90-1.00 0.50 (<.01) 0.50-0.50
67 0.72 (0.14) 0.43-0.86 0.59 (0.18) 0.21-0.89 0.75 (0.08) 0.64-0.86 0.51 (0.22) 0.14-0.76 0.64 (0.18) 0.15-0.86 0.45 (0.19) 0.00-0.79
68 0.86 (0.09) 0.73-0.91 0.48 (0.30) 0.20-0.90 0.89 (0.05) 0.82-0.91 0.57 (0.24) 0.40-0.90 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
71 0.66 (0.10) 0.45-0.82 0.60 (0.14) 0.33-0.83 0.66 (0.12) 0.45-0.91 0.39 (0.16) 0.12-0.62 0.57 (0.21) 0.00-0.70 0.41 (0.17) 0.00-0.50
73 0.86 (0.08) 0.71-0.93 0.44 (0.31) 0.15-0.92 0.92 (0.02) 0.86-0.93 0.46 (0.27) 0.00-0.83 0.91 (0.06) 0.69-0.92 0.45 (0.32) 0.00-0.92
77 0.90 (<.01) 0.90-0.90 0.59 (0.27) 0.22-1.00 0.86 (0.10) 0.70-1.00 0.44 (0.38) 0.00-1.00 0.88 (0.04) 0.80-0.90 0.56 (0.15) 0.50-0.89
82 0.92 (<.01) 0.92-0.93 0.31 (0.31) 0.00-0.92 0.92 (<.01) 0.91-0.93 0.55 (0.31) 0.00-1.00 0.91 (<.01) 0.90-0.93 0.53 (0.21) 0.17-1.00
88 0.90 (<.01) 0.90-0.90 0.47 (0.37) 0.11-0.89 0.90 (<.01) 0.90-0.90 0.40 (0.25) 0.11-0.72 0.95 (0.06) 0.90-1.00 0.50 (<.01) 0.50-0.50
6.2.1.1.7 Interacted
(tmp %>% filter(outcome == "interacted"))$tab[[1]] %>%
    scroll_box(height = "500px") 
(#tab:px sum tab)Table SX
Descriptive Statistics of Model Performance for Each Participant for interacted
Elastic Net
BISCWIT
Random Forest
Accuracy
AUC
Accuracy
AUC
Accuracy
AUC
ID M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range M (SD) Range
01 0.73 (0.06) 0.64-0.83 0.46 (0.16) 0.22-0.65 0.72 (0.16) 0.36-0.83 0.49 (0.18) 0.20-0.72 0.81 (0.01) 0.80-0.83 0.50 (<.01) 0.50-0.50
02 0.67 (0.08) 0.46-0.83 0.52 (0.14) 0.28-0.72 0.70 (0.09) 0.54-0.83 0.37 (0.16) 0.12-0.64 0.67 (<.01) 0.67-0.69 0.55 (0.15) 0.44-1.00
03 0.40 (0.10) 0.27-0.50 0.42 (0.13) 0.29-0.67 0.45 (0.17) 0.27-0.73 0.49 (0.20) 0.24-0.71 0.39 (0.19) 0.18-0.70 0.38 (0.15) 0.21-0.57
05 0.48 (0.09) 0.33-0.67 0.52 (0.12) 0.31-0.69 0.52 (0.14) 0.23-0.75 0.43 (0.17) 0.20-0.69 0.61 (0.11) 0.42-0.73 0.65 (0.13) 0.46-0.83
08 0.58 (0.09) 0.42-0.67 0.57 (0.12) 0.40-0.71 0.61 (0.06) 0.50-0.67 0.40 (0.09) 0.29-0.57 0.57 (0.05) 0.50-0.64 0.60 (0.11) 0.50-0.73
09 0.34 (0.08) 0.27-0.45 0.42 (0.16) 0.25-0.71 0.32 (0.09) 0.18-0.45 0.50 (0.15) 0.23-0.69 0.28 (0.06) 0.20-0.40 0.41 (0.16) 0.12-0.50
10 0.65 (0.20) 0.36-0.83 0.47 (0.15) 0.28-0.75 0.61 (0.11) 0.42-0.75 0.69 (0.11) 0.45-0.78 0.69 (0.16) 0.42-0.82 0.43 (0.15) 0.12-0.56
103 0.44 (0.08) 0.38-0.56 0.53 (0.12) 0.38-0.72 0.45 (0.10) 0.31-0.62 0.47 (0.11) 0.30-0.62 0.36 (0.08) 0.29-0.50 0.60 (0.11) 0.43-0.77
105 0.76 (0.05) 0.62-0.80 0.48 (0.11) 0.22-0.67 0.76 (0.04) 0.65-0.80 0.54 (0.10) 0.39-0.81 0.76 (0.02) 0.73-0.80 0.47 (0.09) 0.30-0.61
106 0.60 (0.13) 0.38-0.69 0.44 (0.10) 0.22-0.50 0.55 (0.09) 0.38-0.69 0.60 (0.11) 0.46-0.75 0.49 (0.09) 0.31-0.60 0.44 (0.19) 0.16-0.68
107 0.55 (0.10) 0.33-0.67 0.63 (0.10) 0.40-0.73 0.62 (0.11) 0.47-0.80 0.29 (0.10) 0.16-0.50 0.49 (0.04) 0.40-0.54 0.56 (0.08) 0.39-0.69
108 0.48 (0.14) 0.25-0.65 0.44 (0.08) 0.31-0.56 0.51 (0.09) 0.40-0.70 0.56 (0.12) 0.29-0.73 0.60 (0.11) 0.40-0.70 0.59 (0.12) 0.38-0.73
11 0.64 (0.06) 0.60-0.73 0.66 (0.10) 0.53-0.77 0.53 (0.06) 0.45-0.60 0.46 (0.14) 0.32-0.60 0.42 (0.13) 0.22-0.50 0.54 (0.25) 0.30-0.76
110 0.71 (0.11) 0.50-0.83 0.84 (0.17) 0.53-1.00 0.66 (0.15) 0.25-0.92 0.13 (0.18) 0.00-0.55 0.56 (0.17) 0.33-0.83 0.73 (0.15) 0.40-0.90
111 0.87 (0.06) 0.70-0.90 0.39 (0.17) 0.00-0.56 0.85 (0.05) 0.80-0.90 0.37 (0.19) 0.11-0.67 0.94 (0.05) 0.90-1.00 0.50 (<.01) 0.50-0.50
112 0.85 (<.01) 0.85-0.85 0.58 (0.19) 0.27-0.89 0.79 (0.06) 0.69-0.92 0.46 (0.22) 0.14-0.82 0.84 (<.01) 0.83-0.85 0.38 (0.17) 0.00-0.50
113 0.54 (0.12) 0.40-0.70 0.58 (0.13) 0.38-0.79 0.53 (0.13) 0.30-0.80 0.46 (0.13) 0.25-0.71 0.50 (0.15) 0.20-0.70 0.55 (0.17) 0.29-0.83
118 0.45 (0.18) 0.18-0.73 0.45 (0.14) 0.25-0.67 0.50 (0.11) 0.27-0.64 0.46 (0.17) 0.19-0.71 0.49 (0.20) 0.27-0.80 0.56 (0.22) 0.29-0.88
119 0.37 (0.06) 0.36-0.57 0.66 (0.12) 0.50-0.83 0.56 (0.13) 0.36-0.71 0.37 (0.12) 0.27-0.61 0.47 (0.13) 0.36-0.71 0.72 (0.10) 0.56-0.87
121 0.56 (0.08) 0.50-0.67 0.65 (0.07) 0.57-0.73 0.56 (0.04) 0.50-0.58 0.32 (0.15) 0.20-0.51 0.62 (0.02) 0.60-0.64 0.50 (<.01) 0.50-0.50
123 0.41 (0.04) 0.33-0.47 0.38 (0.13) 0.20-0.64 0.38 (0.08) 0.13-0.47 0.56 (0.13) 0.39-0.80 0.39 (0.04) 0.29-0.43 0.41 (0.10) 0.21-0.62
124 0.81 (0.03) 0.73-0.82 0.55 (0.21) 0.22-0.83 0.82 (0.03) 0.80-0.89 0.50 (<.01) 0.50-0.50
126 0.82 (0.05) 0.67-0.83 0.61 (0.22) 0.20-0.95 0.63 (0.06) 0.58-0.75 0.56 (0.14) 0.40-0.97 0.79 (0.07) 0.64-0.83 0.46 (0.11) 0.17-0.50
129 0.82 (0.07) 0.67-1.00 0.74 (0.26) 0.15-1.00 0.86 (0.06) 0.75-0.92 0.21 (0.23) 0.00-0.77 0.83 (<.01) 0.82-0.83 0.52 (0.08) 0.50-0.80
132 0.45 (0.10) 0.18-0.55 0.46 (0.17) 0.10-0.80 0.45 (0.14) 0.18-0.64 0.54 (0.12) 0.37-0.77 0.51 (0.09) 0.36-0.73 0.53 (0.14) 0.38-0.97
133 0.87 (0.08) 0.70-0.90 0.50 (0.24) 0.00-0.78 0.87 (0.05) 0.80-0.90 0.48 (0.40) 0.00-1.00 0.89 (0.04) 0.80-0.90 0.67 (0.36) 0.00-1.00
135 0.89 (0.08) 0.71-0.93 0.55 (0.31) 0.00-1.00 0.91 (0.04) 0.79-0.93 0.42 (0.36) 0.00-0.92 0.93 (<.01) 0.92-0.93 0.51 (0.31) 0.00-1.00
14 0.75 (<.01) 0.75-0.75 0.33 (0.25) 0.00-0.61 0.62 (0.08) 0.50-0.75 0.59 (0.18) 0.39-0.89 0.72 (0.03) 0.67-0.75 0.54 (0.12) 0.50-0.81
146 0.43 (0.09) 0.22-0.52 0.46 (0.18) 0.21-0.72 0.46 (0.10) 0.33-0.65 0.57 (0.18) 0.26-0.80 0.45 (0.05) 0.35-0.52 0.39 (0.19) 0.10-0.79
148 0.49 (0.14) 0.25-0.67 0.36 (0.20) 0.10-0.86 0.49 (0.13) 0.33-0.67 0.58 (0.27) 0.17-0.91 0.65 (0.12) 0.45-0.80 0.47 (0.12) 0.07-0.61
149 0.48 (0.06) 0.39-0.63 0.59 (0.08) 0.50-0.77 0.50 (0.08) 0.42-0.74 0.44 (0.10) 0.19-0.56 0.49 (0.12) 0.32-0.74 0.69 (0.13) 0.44-0.91
15 0.52 (0.16) 0.36-0.73 0.43 (0.08) 0.33-0.50 0.45 (0.07) 0.36-0.55 0.61 (0.07) 0.53-0.70 0.65 (0.06) 0.60-0.70 0.46 (0.08) 0.33-0.50
150 0.43 (0.10) 0.24-0.60 0.48 (0.13) 0.28-0.64 0.43 (0.09) 0.28-0.56 0.52 (0.10) 0.39-0.77 0.37 (0.07) 0.27-0.50 0.39 (0.15) 0.18-0.62
152 0.59 (0.06) 0.48-0.71 0.52 (0.09) 0.42-0.71 0.57 (0.07) 0.48-0.67 0.43 (0.09) 0.32-0.58 0.58 (0.06) 0.44-0.64 0.54 (0.11) 0.36-0.71
154 0.45 (0.05) 0.39-0.53 0.52 (0.08) 0.42-0.71 0.50 (0.10) 0.24-0.67 0.44 (0.15) 0.25-0.78 0.48 (0.09) 0.25-0.61 0.57 (0.15) 0.33-0.84
155 0.52 (0.18) 0.22-0.78 0.51 (0.22) 0.19-0.85 0.54 (0.12) 0.33-0.72 0.45 (0.16) 0.24-0.74 0.49 (0.06) 0.35-0.56 0.47 (0.12) 0.26-0.73
156 0.74 (0.02) 0.71-0.76 0.51 (0.04) 0.46-0.63 0.67 (0.04) 0.57-0.71 0.45 (0.06) 0.35-0.55 0.70 (0.05) 0.60-0.75 0.35 (0.09) 0.23-0.58
157 0.58 (0.02) 0.55-0.60 0.54 (0.11) 0.23-0.62 0.54 (0.07) 0.45-0.67 0.43 (0.10) 0.29-0.65 0.58 (0.02) 0.52-0.62 0.44 (0.12) 0.30-0.63
158 0.61 (0.23) 0.27-0.93 0.73 (0.28) 0.25-1.00 0.61 (0.07) 0.47-0.73 0.22 (0.31) 0.00-1.00 0.75 (0.15) 0.53-0.93 0.74 (0.33) 0.14-1.00
159 0.54 (0.10) 0.30-0.70 0.56 (0.11) 0.35-0.73 0.50 (0.08) 0.35-0.60 0.52 (0.08) 0.30-0.64 0.61 (0.10) 0.47-0.79 0.72 (0.12) 0.49-0.88
160 0.70 (0.05) 0.56-0.78 0.57 (0.11) 0.42-0.74 0.67 (0.07) 0.56-0.83 0.45 (0.11) 0.28-0.59 0.70 (0.04) 0.61-0.78 0.57 (0.14) 0.20-0.77
162 0.51 (0.11) 0.43-0.85 0.54 (0.09) 0.40-0.74 0.54 (0.13) 0.36-0.77 0.40 (0.11) 0.24-0.58 0.43 (0.05) 0.36-0.50 0.48 (0.05) 0.36-0.56
164 0.63 (0.04) 0.61-0.74 0.57 (0.09) 0.50-0.72 0.66 (0.09) 0.48-0.78 0.31 (0.12) 0.19-0.62 0.64 (0.11) 0.43-0.81 0.65 (0.14) 0.33-0.80
165 0.49 (0.07) 0.45-0.64 0.51 (0.14) 0.33-0.80 0.44 (0.11) 0.27-0.64 0.56 (0.15) 0.27-0.83 0.47 (0.03) 0.44-0.50 0.50 (<.01) 0.50-0.50
166 0.43 (0.13) 0.25-0.58 0.34 (0.12) 0.14-0.56 0.45 (0.08) 0.33-0.58 0.58 (0.08) 0.43-0.71 0.47 (0.14) 0.30-0.73 0.44 (0.12) 0.25-0.62
167 0.76 (0.09) 0.55-0.82 0.68 (0.13) 0.39-0.78 0.71 (0.06) 0.64-0.82 0.35 (0.18) 0.11-0.72 0.80 (0.03) 0.70-0.82 0.49 (0.11) 0.31-0.81
168 0.77 (0.04) 0.69-0.85 0.73 (0.10) 0.53-0.87 0.77 (<.01) 0.77-0.77 0.33 (0.11) 0.10-0.52 0.76 (<.01) 0.75-0.77 0.47 (0.19) 0.22-0.78
169 0.93 (0.02) 0.88-0.95 0.62 (0.24) 0.33-1.00 0.94 (0.02) 0.89-0.95 0.64 (0.25) 0.28-0.93 0.77 (0.26) 0.21-0.95 0.56 (0.28) 0.27-0.94
17 0.66 (0.11) 0.46-0.79 0.45 (0.27) 0.06-0.94 0.68 (0.10) 0.50-0.85 0.42 (0.12) 0.24-0.60 0.78 (0.03) 0.77-0.83 0.74 (0.17) 0.50-1.00
170 0.69 (0.04) 0.62-0.76 0.57 (0.13) 0.34-0.81 0.65 (0.08) 0.46-0.76 0.47 (0.12) 0.28-0.67 0.70 (0.05) 0.59-0.75 0.43 (0.19) 0.10-0.76
171 0.56 (0.11) 0.42-0.68 0.41 (0.08) 0.22-0.50 0.41 (0.08) 0.28-0.52 0.66 (0.08) 0.54-0.77 0.63 (0.11) 0.46-0.76 0.48 (0.11) 0.33-0.69
174 0.71 (0.06) 0.60-0.76 0.58 (0.10) 0.41-0.73 0.62 (0.07) 0.48-0.76 0.45 (0.06) 0.32-0.59 0.71 (0.07) 0.52-0.78 0.53 (0.11) 0.32-0.65
177 0.85 (0.11) 0.69-0.92 0.48 (0.21) 0.25-0.75 0.67 (0.04) 0.62-0.69 0.61 (0.26) 0.29-0.92 0.91 (<.01) 0.91-0.92 0.29 (0.18) 0.10-0.50
18 0.49 (0.08) 0.32-0.63 0.52 (0.15) 0.28-0.77 0.51 (0.05) 0.47-0.63 0.40 (0.12) 0.27-0.67 0.45 (0.04) 0.44-0.58 0.59 (0.11) 0.38-0.76
180 0.64 (0.16) 0.36-0.82 0.64 (0.14) 0.38-0.92 0.60 (0.08) 0.45-0.73 0.26 (0.13) 0.00-0.42 0.71 (0.20) 0.27-0.91 0.63 (0.10) 0.38-0.75
181 0.91 (<.01) 0.91-0.91 0.59 (0.36) 0.00-1.00 0.91 (<.01) 0.91-0.91 0.38 (0.34) 0.00-0.90 0.90 (0.03) 0.89-1.00 0.50 (<.01) 0.50-0.50
184 0.89 (0.06) 0.69-0.92 0.65 (0.19) 0.50-1.00 0.61 (0.12) 0.42-0.77 0.68 (0.34) 0.25-1.00 0.92 (0.11) 0.58-1.00 0.50 (<.01) 0.50-0.50
185 0.87 (0.08) 0.60-0.90 0.35 (0.12) 0.22-0.61 0.76 (0.07) 0.63-0.90 0.57 (0.12) 0.38-0.75 0.88 (0.02) 0.83-0.90 0.43 (0.13) 0.22-0.62
186 0.61 (0.23) 0.27-0.93 0.57 (0.27) 0.00-0.93 0.72 (0.12) 0.53-0.93 0.45 (0.27) 0.11-0.86 0.69 (0.19) 0.43-0.93 0.46 (0.29) 0.00-0.92
187 0.93 (0.04) 0.82-0.95 0.42 (0.24) 0.12-0.84 0.95 (<.01) 0.94-0.95 0.49 (0.26) 0.08-0.84 0.95 (0.02) 0.92-1.00 0.46 (0.32) 0.00-1.00
188 0.55 (0.07) 0.42-0.67 0.50 (0.06) 0.40-0.66 0.54 (0.08) 0.42-0.67 0.52 (0.18) 0.17-0.80 0.61 (0.05) 0.58-0.75 0.53 (0.18) 0.26-0.89
189 0.65 (0.03) 0.58-0.67 0.51 (0.21) 0.12-0.78 0.62 (0.10) 0.50-0.83 0.51 (0.16) 0.31-0.83 0.63 (0.02) 0.60-0.67 0.50 (<.01) 0.50-0.50
190 0.57 (0.03) 0.50-0.64 0.49 (0.13) 0.30-0.77 0.54 (0.07) 0.41-0.65 0.52 (0.14) 0.25-0.73 0.59 (0.03) 0.53-0.62 0.43 (0.13) 0.11-0.62
192 0.60 (0.17) 0.31-0.85 0.66 (0.18) 0.43-0.92 0.52 (0.09) 0.31-0.69 0.23 (0.18) 0.07-0.77 0.54 (0.13) 0.31-0.77 0.54 (0.14) 0.20-0.80
195 0.76 (0.08) 0.59-0.82 0.43 (0.12) 0.08-0.58 0.68 (0.10) 0.53-0.85 0.49 (0.08) 0.33-0.64 0.68 (0.12) 0.43-0.81 0.34 (0.20) 0.06-0.59
196 0.27 (0.18) 0.08-0.58 0.71 (0.21) 0.40-0.91 0.45 (0.14) 0.17-0.58 0.20 (0.23) 0.00-0.68 0.13 (0.06) 0.08-0.25 0.29 (0.19) 0.10-0.64
20 0.65 (0.04) 0.64-0.79 0.73 (0.11) 0.47-0.90 0.65 (0.03) 0.64-0.71 0.25 (0.09) 0.07-0.36 0.63 (0.03) 0.55-0.64 0.57 (0.14) 0.27-0.73
201 0.66 (0.13) 0.45-0.82 0.72 (0.10) 0.57-0.83 0.62 (0.16) 0.45-0.82 0.24 (0.08) 0.13-0.35 0.59 (0.06) 0.55-0.73 0.52 (0.06) 0.50-0.67
206 0.83 (0.03) 0.72-0.89 0.38 (0.14) 0.10-0.62 0.82 (0.03) 0.78-0.83 0.70 (0.14) 0.43-0.89 0.85 (0.03) 0.82-0.88 0.47 (0.13) 0.32-0.71
207 0.43 (0.04) 0.31-0.46 0.37 (0.18) 0.07-0.69 0.40 (0.07) 0.31-0.50 0.70 (0.18) 0.26-0.98 0.48 (0.02) 0.46-0.54 0.46 (0.09) 0.33-0.61
209 0.73 (0.11) 0.50-0.83 0.56 (0.14) 0.25-0.76 0.64 (0.13) 0.42-0.88 0.49 (0.21) 0.12-0.83 0.79 (0.08) 0.64-0.91 0.54 (0.15) 0.21-0.80
21 0.56 (0.08) 0.40-0.73 0.59 (0.13) 0.41-0.82 0.51 (0.09) 0.40-0.67 0.41 (0.10) 0.24-0.55 0.55 (0.08) 0.43-0.73 0.52 (0.09) 0.38-0.68
211 0.88 (<.01) 0.85-0.89 0.52 (0.08) 0.38-0.68 0.81 (0.05) 0.73-0.89 0.48 (0.10) 0.27-0.62 0.88 (0.02) 0.81-0.88 0.64 (0.08) 0.48-0.74
212 0.63 (0.14) 0.40-0.81 0.66 (0.10) 0.47-0.83 0.63 (0.10) 0.43-0.81 0.39 (0.09) 0.31-0.57 0.64 (0.08) 0.47-0.75 0.56 (0.08) 0.39-0.67
214 0.75 (0.02) 0.69-0.75 0.60 (0.08) 0.50-0.77 0.68 (0.09) 0.56-0.81 0.36 (0.05) 0.29-0.49 0.74 (<.01) 0.73-0.75 0.49 (0.09) 0.27-0.59
216 0.74 (<.01) 0.74-0.74 0.45 (0.14) 0.25-0.82 0.71 (0.04) 0.63-0.78 0.53 (0.17) 0.21-0.73 0.75 (<.01) 0.74-0.78 0.31 (0.13) 0.12-0.56
22 0.39 (0.06) 0.33-0.50 0.56 (0.15) 0.33-0.85 0.50 (0.16) 0.21-0.83 0.49 (0.22) 0.15-0.91 0.43 (0.17) 0.23-0.73 0.47 (0.21) 0.10-0.77
220 0.47 (0.09) 0.33-0.64 0.55 (0.13) 0.34-0.80 0.51 (0.12) 0.33-0.64 0.41 (0.16) 0.23-0.69 0.48 (0.08) 0.36-0.64 0.50 (0.10) 0.33-0.63
221 0.75 (<.01) 0.74-0.77 0.55 (0.08) 0.39-0.67 0.73 (0.05) 0.60-0.78 0.48 (0.05) 0.42-0.55 0.75 (<.01) 0.74-0.76 0.64 (0.11) 0.47-0.84
23 0.79 (0.16) 0.43-0.86 0.37 (0.23) 0.08-0.71 0.83 (0.04) 0.79-0.86 0.46 (0.22) 0.21-0.88 0.91 (0.02) 0.86-0.92 0.49 (0.31) 0.09-0.92
25 0.80 (0.09) 0.58-0.83 0.42 (0.11) 0.25-0.55 0.83 (<.01) 0.83-0.83 0.53 (0.13) 0.35-0.70 0.86 (0.04) 0.83-0.90 0.50 (<.01) 0.50-0.50
26 0.45 (0.11) 0.29-0.71 0.53 (0.11) 0.38-0.75 0.48 (0.05) 0.44-0.57 0.48 (0.11) 0.27-0.68 0.47 (0.09) 0.31-0.57 0.56 (0.11) 0.33-0.67
27 0.88 (0.06) 0.73-0.92 0.46 (0.33) 0.00-0.91 0.89 (0.04) 0.82-0.92 0.53 (0.31) 0.00-1.00 0.91 (0.03) 0.83-1.00 0.51 (0.04) 0.50-0.64
28 0.49 (0.14) 0.36-0.79 0.48 (0.14) 0.33-0.71 0.44 (0.09) 0.29-0.57 0.47 (0.11) 0.29-0.64 0.50 (0.13) 0.31-0.71 0.50 (0.19) 0.24-0.76
30 0.44 (0.09) 0.31-0.64 0.43 (0.13) 0.24-0.68 0.55 (0.10) 0.43-0.77 0.46 (0.16) 0.19-0.77 0.51 (0.09) 0.43-0.77 0.58 (0.16) 0.31-0.83
31 0.80 (0.13) 0.50-0.93 0.75 (0.23) 0.50-1.00 0.68 (0.10) 0.57-0.93 0.33 (0.26) 0.00-0.75 0.82 (0.08) 0.69-0.92 0.79 (0.19) 0.46-1.00
32 0.46 (0.09) 0.29-0.57 0.44 (0.08) 0.27-0.59 0.44 (0.08) 0.36-0.57 0.56 (0.13) 0.33-0.72 0.51 (0.11) 0.29-0.69 0.53 (0.13) 0.29-0.76
33 0.75 (0.08) 0.64-0.82 0.62 (0.25) 0.22-0.89 0.73 (0.08) 0.55-0.82 0.37 (0.19) 0.17-0.72 0.85 (0.04) 0.82-0.89 0.50 (<.01) 0.50-0.50
35 0.56 (0.06) 0.42-0.58 0.49 (0.04) 0.40-0.50 0.54 (0.13) 0.42-0.75 0.48 (0.20) 0.17-0.71 0.60 (0.08) 0.45-0.67 0.50 (0.20) 0.32-0.91
36 0.60 (0.09) 0.42-0.75 0.70 (0.15) 0.43-0.89 0.54 (0.11) 0.25-0.73 0.30 (0.16) 0.00-0.63 0.43 (0.15) 0.18-0.64 0.48 (0.17) 0.22-0.78
38 0.64 (0.10) 0.33-0.79 0.58 (0.06) 0.50-0.68 0.63 (0.11) 0.45-0.82 0.33 (0.13) 0.14-0.57 0.50 (0.10) 0.33-0.64 0.56 (0.09) 0.44-0.71
39 0.17 (0.05) 0.14-0.29 0.65 (0.18) 0.50-0.96 0.44 (0.08) 0.29-0.57 0.24 (0.15) 0.04-0.42 0.21 (0.10) 0.08-0.38 0.58 (0.21) 0.35-0.91
40 0.56 (0.10) 0.45-0.73 0.51 (0.19) 0.10-0.78 0.61 (0.08) 0.55-0.82 0.42 (0.14) 0.22-0.78 0.58 (0.10) 0.36-0.73 0.58 (0.12) 0.43-0.80
42 0.89 (0.05) 0.82-0.91 0.44 (0.23) 0.15-0.70 0.91 (<.01) 0.91-0.91 0.42 (0.30) 0.10-0.80 0.90 (<.01) 0.90-0.91 0.50 (<.01) 0.50-0.50
43 0.79 (0.04) 0.73-0.82 0.61 (0.17) 0.33-0.78 0.73 (0.07) 0.64-0.82 0.42 (0.14) 0.28-0.67 0.77 (0.08) 0.60-0.80 0.46 (0.07) 0.38-0.56
44 0.43 (0.20) 0.27-0.73 0.44 (0.11) 0.32-0.57 0.39 (0.09) 0.27-0.45 0.51 (0.06) 0.43-0.57 0.52 (0.11) 0.40-0.64 0.61 (0.12) 0.43-0.68
49 0.52 (0.09) 0.42-0.67 0.60 (0.17) 0.37-0.83 0.45 (0.22) 0.18-0.83 0.50 (0.25) 0.08-0.87 0.55 (0.24) 0.20-0.90 0.52 (0.29) 0.04-0.92
51 0.44 (0.10) 0.27-0.64 0.47 (0.18) 0.24-0.82 0.55 (0.09) 0.33-0.67 0.48 (0.10) 0.36-0.69 0.55 (0.11) 0.36-0.75 0.54 (0.11) 0.37-0.72
52 0.51 (0.15) 0.27-0.73 0.54 (0.18) 0.25-0.83 0.58 (0.13) 0.27-0.73 0.37 (0.14) 0.08-0.58 0.67 (0.14) 0.44-0.89 0.49 (0.20) 0.17-0.88
53 0.41 (0.09) 0.27-0.53 0.39 (0.13) 0.22-0.60 0.23 (0.19) 0.00-0.53 0.78 (0.23) 0.36-1.00 0.46 (0.06) 0.36-0.55 0.38 (0.14) 0.20-0.67
56 0.52 (0.09) 0.40-0.60 0.44 (0.04) 0.40-0.50 0.69 (0.08) 0.64-0.80 0.36 (0.04) 0.32-0.40 0.61 (0.08) 0.50-0.70 0.73 (0.09) 0.60-0.80
58 0.49 (0.18) 0.23-0.75 0.64 (0.21) 0.31-0.84 0.65 (0.12) 0.45-0.82 0.31 (0.19) 0.00-0.65 0.39 (0.19) 0.20-0.67 0.32 (0.13) 0.08-0.46
61 0.67 (0.19) 0.38-0.91 0.61 (0.24) 0.22-1.00 0.44 (0.13) 0.33-0.73 0.51 (0.21) 0.06-0.67 0.71 (0.11) 0.50-0.82 0.64 (0.13) 0.38-0.85
63 0.71 (0.11) 0.45-0.82 0.57 (0.12) 0.46-0.86 0.64 (0.17) 0.45-0.91 0.43 (0.19) 0.11-0.67 0.71 (0.15) 0.45-0.82 0.56 (0.08) 0.50-0.72
66 0.91 (<.01) 0.91-0.91 0.76 (0.26) 0.10-1.00 0.88 (0.04) 0.82-0.91 0.40 (0.33) 0.00-0.95 0.89 (0.02) 0.88-0.91 0.50 (<.01) 0.50-0.50
67 0.59 (0.20) 0.21-0.86 0.61 (0.22) 0.06-0.92 0.81 (0.05) 0.71-0.86 0.29 (0.22) 0.08-0.67 0.53 (0.27) 0.15-0.92 0.62 (0.17) 0.41-0.91
68 0.43 (0.21) 0.27-0.73 0.56 (0.18) 0.29-0.69 0.23 (0.22) 0.09-0.55 0.68 (0.37) 0.19-0.96 0.35 (0.19) 0.20-0.64 0.73 (0.12) 0.56-0.83
71 0.27 (0.02) 0.18-0.27 0.57 (0.16) 0.21-0.71 0.43 (0.13) 0.18-0.55 0.38 (0.20) 0.12-0.71 0.33 (0.08) 0.27-0.55 0.52 (0.06) 0.50-0.67
72 0.55 (0.12) 0.21-0.69 0.48 (0.08) 0.33-0.67 0.43 (0.06) 0.31-0.50 0.55 (0.11) 0.36-0.64 0.52 (0.16) 0.31-0.77 0.63 (0.14) 0.42-0.83
73 0.71 (0.08) 0.46-0.77 0.49 (0.05) 0.37-0.57 0.55 (0.05) 0.50-0.71 0.53 (0.14) 0.31-0.79 0.60 (0.08) 0.46-0.77 0.36 (0.09) 0.23-0.57
74 0.47 (0.08) 0.36-0.57 0.39 (0.08) 0.25-0.54 0.47 (0.10) 0.36-0.64 0.60 (0.08) 0.48-0.71 0.61 (0.06) 0.54-0.77 0.64 (0.20) 0.39-1.00
77 0.54 (0.11) 0.50-0.80 0.51 (0.15) 0.24-0.68 0.50 (0.16) 0.30-0.80 0.46 (0.20) 0.20-0.64 0.46 (0.13) 0.25-0.62 0.32 (0.14) 0.20-0.50
78 0.57 (0.10) 0.36-0.64 0.53 (0.10) 0.36-0.66 0.43 (0.16) 0.27-0.64 0.59 (0.15) 0.29-0.75 0.66 (0.05) 0.60-0.70 0.52 (0.04) 0.48-0.57
81 0.57 (0.15) 0.36-0.87 0.60 (0.13) 0.47-0.83 0.50 (0.16) 0.27-0.73 0.57 (0.19) 0.33-0.94 0.67 (0.17) 0.44-0.86 0.45 (0.20) 0.07-0.67
82 0.47 (0.11) 0.23-0.67 0.51 (0.23) 0.21-0.91 0.48 (0.11) 0.36-0.75 0.60 (0.29) 0.14-0.90 0.51 (0.03) 0.45-0.55 0.55 (0.10) 0.50-0.88
84 0.66 (0.08) 0.38-0.69 0.46 (0.11) 0.25-0.69 0.57 (0.11) 0.38-0.77 0.53 (0.18) 0.17-0.69 0.67 (0.04) 0.62-0.77 0.47 (0.12) 0.19-0.68
85 0.50 (0.16) 0.15-0.69 0.36 (0.11) 0.17-0.56 0.29 (0.06) 0.23-0.38 0.66 (0.06) 0.56-0.79 0.52 (0.20) 0.17-0.83 0.55 (0.22) 0.12-0.84
86 0.54 (0.09) 0.43-0.69 0.66 (0.13) 0.35-0.80 0.60 (0.10) 0.43-0.77 0.36 (0.12) 0.10-0.48 0.47 (0.08) 0.36-0.69 0.65 (0.11) 0.51-0.88
87 0.82 (<.01) 0.82-0.82 0.68 (0.11) 0.56-0.83 0.75 (0.08) 0.55-0.82 0.48 (0.09) 0.28-0.61 0.82 (<.01) 0.82-0.82 0.50 (<.01) 0.50-0.50
88 0.47 (0.13) 0.30-0.60 0.45 (0.08) 0.34-0.52 0.50 (0.08) 0.40-0.60 0.56 (0.03) 0.52-0.60 0.50 (<.01) 0.50-0.50 0.46 (0.09) 0.32-0.50

6.2.1.2 Figure (Figure 2)

Now, we’ll create the figure that samples 25 participants ranges. We’ll create separate figures for each outcome (Procrastination, Loneliness) and metric (accuracy, AUC), which will be in Supplemental Materials (05-results/05/figures/01-px-sum-dist). Then, we’ll create a combined version for accuracy and both outcomes that will become Figure 2 in the manuscript.

px_sum_plot <- function(d, metric, outcome, model){
  m <- if(metric == "accuracy") "Accuracy" else "AUC"
  mod <- mapvalues(model, c("glmnet", "biscwit", "rf"), c("Elastic Net", "BISCWIT", "Random Forest"), warn_missing = F)
  # set.seed(6)
  d %>%
    # filter(SID %in% sample(SID, 25)) %>%
    mutate(SID = forcats::fct_reorder(SID, .estimate, median)) %>%
      ggplot(aes(x = SID, y = .estimate)) + 
      scale_y_continuous(limits = c(0,1), breaks = seq(0,1,.5)) +
      stat_pointinterval() +
      labs(x = NULL, y = m, title = mod) + 
      coord_flip() + 
      # facet_grid(. ~ , scales = "free", space = "free") + 
      theme_classic() + 
      theme(plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5)
            , axis.text = element_text(face = "bold", color = "black")
            , axis.title = element_text(face = "bold", size = rel(1.1))
            , axis.line = element_blank()
            , panel.background = element_rect(color = "black", size = 1)
            # , plot.margin = margin(1,.1,.1,.1, unit = "cm")
            )
}

combine_px_plots <- function(d, outcome, metric){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  
  my_theme <- function(...) {
    theme_classic() + 
      theme(plot.title = element_text(face = "bold"))
    }

title_theme <- calc_element("plot.title", my_theme())

ttl <- ggdraw() + 
    draw_label(
        o,
        fontfamily = title_theme$family,
        fontface = title_theme$face,
        size = title_theme$size
    )

  p1 <- d$p[[1]] + labs(y = ""); p2 <- d$p[[2]]; p3 <- d$p[[3]] + labs(y = "")
  p <- cowplot::plot_grid(p1, p2, p3, nrow = 1, axis = "b")
  p <- plot_grid(ttl, p, nrow = 2, rel_heights = c(.05,.95))
  ggsave(p, file = sprintf("%s/05-results/05-figures/01-px-sum-dist/%s_%s.pdf"
                           , local_path, outcome, metric)
         , width = 8
         , height = 5)
  ggsave(p, file = sprintf("%s/05-results/05-figures/01-px-sum-dist/png/%s_%s.png"
                           , local_path, outcome, metric)
         , width = 8
         , height = 5)
  return(p)
}

set.seed(8)
px_plots_sum <- sum_res %>% 
  unnest(data) %>%
  group_by(outcome) %>%
  filter(SID %in% sample(unique(SID), 25)) %>%
  group_by(outcome, .metric, model) %>%
  nest() %>%
  ungroup() %>%
  mutate(model = factor(model, c("glmnet", "biscwit", "rf"))
         , p = pmap(list(data, .metric, outcome, model), px_sum_plot)) %>%
  arrange(outcome, model, .metric) %>%
  group_by(outcome, .metric) %>%
  nest() %>% 
  ungroup() %>%
  mutate(p = pmap(list(data, outcome, .metric), combine_px_plots))

p <- cowplot::plot_grid(
  (px_plots_sum %>% filter(outcome == "lonely" & .metric == "accuracy"))$p[[1]]
  , (px_plots_sum %>% filter(outcome == "prcrst" & .metric == "accuracy"))$p[[1]]
  , (px_plots_sum %>% filter(outcome == "study" & .metric == "accuracy"))$p[[1]]
  , nrow = 3)
ggsave(p, file = sprintf("%s/05-results/05-figures/fig-2-accuracy.pdf"
                           , local_path)
       , width = 8, height = 12)
ggsave(p, file = sprintf("%s/05-results/05-figures/fig-2-accuracy.png"
                           , local_path)
       , width = 8, height = 12)

Figure 2 in the manuscript is the combination of the classification accuracy graphs below. Each of the figures below present the median, 66%, and 95% range of classification accuracy for a random sample of 25 participants, ordered by the median accuracy (AUC is available in the online materials and webapp [“Model Performance Distributions”]). As is clear in the figures, accuracy varies both across people and within them. In other words, although there are between-person differences in the degree of accuracy, there are also within-person differences, depending on which features are used.

tmp <- px_plots_sum %>% 
  filter(.metric == "accuracy") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.2.1.2.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$p[[1]]

6.2.1.2.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$p[[1]]

6.2.1.2.3 Studying
(tmp %>% filter(outcome == "study"))$p[[1]]

6.2.1.2.4 Argument
(tmp %>% filter(outcome == "argument"))$p[[1]]

6.2.1.2.5 Tired
(tmp %>% filter(outcome == "tired"))$p[[1]]

6.2.1.2.6 Sick
(tmp %>% filter(outcome == "sick"))$p[[1]]

6.2.1.2.7 Interacted
(tmp %>% filter(outcome == "interacted"))$p[[1]]

6.3 Question 3: Do Psychological, Situational, or Full Feature Sets Perform Best?

To answer the question of whether psychological, situational, or full feature sets (with or without time) perform best, we’ll pull the performance metric data we’ve been working with and combine it with information about specific coefficinets.

6.3.1 Psychological Features, Situations, or Time?

6.3.1.1 Table

ord <- paste(
  rep(c("accuracy", "roc_auc"), each = 6)
  , rep(c("glmnet", "biscwit", "rf"), each = 2, times = 2)
  , rep(c("n", "perc"), times = 6)
  , sep = "_")

fps_tab_all <- best_mods %>%
  group_by(model, outcome, group, time, .metric) %>%
  tally() %>%
  group_by(model, outcome, .metric) %>%
  mutate(perc = n/(sum(n, na.rm = T))*100
         , perc = sprintf("%.1f%%",perc)) %>%
  ungroup() %>%
  pivot_wider(names_from = c(".metric", "model")
              , values_from = c("n", "perc")
              , names_glue = "{.metric}_{model}_{.value}"
              , names_sort = T) %>%
  mutate_all(~ifelse(is.na(.), "0", .)) %>%
  mutate(group = factor(str_to_title(group))
         , outcome = factor(outcome, rev(outcomes$trait), rev(outcomes$long_name))
         , time = factor(time, c("no time", "time"), c("No", "Yes"))) %>%
  arrange(outcome, group, time)

fps_tab <- fps_tab_all %>%
  filter(outcome %in% c("Lonely", "Procrastinating", "Studying")) %>%
  select(group, time, ord) %>%
  kable(.
        , "html"
        , escape = F
        , col.names = c("Set", "Time", rep(c("#", "%"), times = 6))
        , align = c("r", "r", rep("c", 12))
        , cap = "<strong>Table 1</strong><br><em>Frequencies of the Full, Psychological, and Situation Feature Sets with or Without Time Being the Best Model for a Participant</em>"
        ) %>%
  kable_styling(full_width = F) %>%
  collapse_rows(1) %>%
  kableExtra::group_rows("Lonely", 1, 6) %>%
  kableExtra::group_rows("Procrastinating", 7, 12) %>%
  kableExtra::group_rows("Studying", 13, 18) %>%
  add_header_above(c(" " = 2, "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2, 
                     "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2)) %>%
  add_header_above(c(" " = 2, "Accuracy" = 6, "AUC" = 6)) 
save_kable(fps_tab, file = sprintf("%s/05-results/04-tables/02-feature-perf-tab.html", local_path))
fps_tab
(#tab:fps tab)Table 1
Frequencies of the Full, Psychological, and Situation Feature Sets with or Without Time Being the Best Model for a Participant
Accuracy
AUC
Elastic Net
BISCWIT
Random Forest
Elastic Net
BISCWIT
Random Forest
Set Time # % # % # % # % # % # %
Lonely
Full No 35 68.6% 33 63.5% 22 43.1% 13 25.5% 12 23.1% 14 28.6%
Yes 5 9.8% 5 9.6% 2 3.9% 7 13.7% 3 5.8% 4 8.2%
Psychological No 9 17.6% 7 13.5% 6 11.8% 8 15.7% 19 36.5% 10 20.4%
Yes 0 0 3 5.8% 1 2.0% 9 17.6% 5 9.6% 2 4.1%
Situations No 1 2.0% 4 7.7% 20 39.2% 8 15.7% 8 15.4% 13 26.5%
Yes 1 2.0% 0 0 0 0 6 11.8% 5 9.6% 6 12.2%
Procrastinating
Full No 48 55.2% 38 43.7% 34 39.5% 14 16.3% 14 16.1% 24 27.9%
Yes 12 13.8% 9 10.3% 4 4.7% 6 7.0% 6 6.9% 8 9.3%
Psychological No 15 17.2% 17 19.5% 14 16.3% 19 22.1% 23 26.4% 18 20.9%
Yes 6 6.9% 7 8.0% 1 1.2% 12 14.0% 10 11.5% 12 14.0%
Situations No 5 5.7% 12 13.8% 29 33.7% 19 22.1% 18 20.7% 17 19.8%
Yes 1 1.1% 4 4.6% 4 4.7% 16 18.6% 16 18.4% 7 8.1%
Studying
Full No 56 50.9% 45 40.9% 38 34.9% 22 20.0% 17 15.5% 34 31.2%
Yes 18 16.4% 6 5.5% 8 7.3% 9 8.2% 14 12.7% 9 8.3%
Psychological No 17 15.5% 26 23.6% 14 12.8% 19 17.3% 27 24.5% 17 15.6%
Yes 9 8.2% 13 11.8% 4 3.7% 23 20.9% 19 17.3% 12 11.0%
Situations No 6 5.5% 12 10.9% 36 33.0% 22 20.0% 18 16.4% 22 20.2%
Yes 4 3.6% 8 7.3% 9 8.3% 15 13.6% 15 13.6% 15 13.8%
rs <- fps_tab_all %>% group_by(outcome) %>% tally() %>% 
    mutate(end = cumsum(n), start = lag(end) + 1, start = ifelse(is.na(start), 1, start))

fps_tab_all <- fps_tab_all %>%
  select(group, time, ord) %>%
  kable(.
        , "html"
        , escape = F
        , col.names = c("Set", "Time", rep(c("#", "%"), times = 6))
        , align = c("r", "r", rep("c", 12))
        , cap = "<strong>Table 1</strong><br><em>Frequencies of the Full, Psychological, and Situation Feature Sets with or Without Time Being the Best Model for a Participant</em>"
        ) %>%
  kable_styling(full_width = F) %>%
  collapse_rows(1) %>%
  add_header_above(c(" " = 2, "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2, 
                     "Elastic Net" = 2, "BISCWIT" = 2, "Random Forest" = 2)) %>%
  add_header_above(c(" " = 2, "Accuracy" = 6, "AUC" = 6)) 
for(i in 1:nrow(rs)){
  fps_tab_all <- fps_tab_all %>%
    kableExtra::group_rows(rs$outcome[i], rs$start[i], rs$end[i])
}

save_kable(fps_tab_all, file = sprintf("%s/05-results/04-tables/02-feature-perf-tab-all.html", local_path))
fps_tab_all
(#tab:fps tab)Table 1
Frequencies of the Full, Psychological, and Situation Feature Sets with or Without Time Being the Best Model for a Participant
Accuracy
AUC
Elastic Net
BISCWIT
Random Forest
Elastic Net
BISCWIT
Random Forest
Set Time # % # % # % # % # % # %
Lonely
Full No 35 68.6% 33 63.5% 22 43.1% 13 25.5% 12 23.1% 14 28.6%
Yes 5 9.8% 5 9.6% 2 3.9% 7 13.7% 3 5.8% 4 8.2%
Psychological No 9 17.6% 7 13.5% 6 11.8% 8 15.7% 19 36.5% 10 20.4%
Yes 0 0 3 5.8% 1 2.0% 9 17.6% 5 9.6% 2 4.1%
Situations No 1 2.0% 4 7.7% 20 39.2% 8 15.7% 8 15.4% 13 26.5%
Yes 1 2.0% 0 0 0 0 6 11.8% 5 9.6% 6 12.2%
Procrastinating
Full No 48 55.2% 38 43.7% 34 39.5% 14 16.3% 14 16.1% 24 27.9%
Yes 12 13.8% 9 10.3% 4 4.7% 6 7.0% 6 6.9% 8 9.3%
Psychological No 15 17.2% 17 19.5% 14 16.3% 19 22.1% 23 26.4% 18 20.9%
Yes 6 6.9% 7 8.0% 1 1.2% 12 14.0% 10 11.5% 12 14.0%
Situations No 5 5.7% 12 13.8% 29 33.7% 19 22.1% 18 20.7% 17 19.8%
Yes 1 1.1% 4 4.6% 4 4.7% 16 18.6% 16 18.4% 7 8.1%
Interacted
Full No 44 40.0% 30 27.0% 38 34.2% 17 15.5% 15 13.5% 34 30.6%
Yes 20 18.2% 14 12.6% 11 9.9% 10 9.1% 10 9.0% 15 13.5%
Psychological No 17 15.5% 28 25.2% 15 13.5% 22 20.0% 28 25.2% 12 10.8%
Yes 10 9.1% 13 11.7% 3 2.7% 19 17.3% 13 11.7% 9 8.1%
Situations No 12 10.9% 18 16.2% 31 27.9% 22 20.0% 27 24.3% 17 15.3%
Yes 7 6.4% 8 7.2% 13 11.7% 20 18.2% 18 16.2% 24 21.6%
Argument
Full No 23 67.6% 24 68.6% 11 32.4% 11 32.4% 8 22.9% 10 29.4%
Yes 3 8.8% 2 5.7% 1 2.9% 2 5.9% 2 5.7% 3 8.8%
Psychological No 6 17.6% 9 25.7% 7 20.6% 4 11.8% 5 14.3% 4 11.8%
Yes 1 2.9% 0 0 0 0 2 5.9% 8 22.9% 3 8.8%
Situations No 1 2.9% 0 0 15 44.1% 12 35.3% 7 20.0% 7 20.6%
Yes 0 0 0 0 0 0 3 8.8% 5 14.3% 7 20.6%
Studying
Full No 56 50.9% 45 40.9% 38 34.9% 22 20.0% 17 15.5% 34 31.2%
Yes 18 16.4% 6 5.5% 8 7.3% 9 8.2% 14 12.7% 9 8.3%
Psychological No 17 15.5% 26 23.6% 14 12.8% 19 17.3% 27 24.5% 17 15.6%
Yes 9 8.2% 13 11.8% 4 3.7% 23 20.9% 19 17.3% 12 11.0%
Situations No 6 5.5% 12 10.9% 36 33.0% 22 20.0% 18 16.4% 22 20.2%
Yes 4 3.6% 8 7.3% 9 8.3% 15 13.6% 15 13.6% 15 13.8%
Sick
Full No 37 66.1% 32 57.1% 16 28.6% 14 25.0% 6 10.9% 17 30.4%
Yes 5 8.9% 5 8.9% 1 1.8% 5 8.9% 7 12.7% 6 10.7%
Psychological No 7 12.5% 14 25.0% 6 10.7% 14 25.0% 13 23.6% 10 17.9%
Yes 3 5.4% 2 3.6% 2 3.6% 13 23.2% 8 14.5% 7 12.5%
Situations No 2 3.6% 2 3.6% 27 48.2% 5 8.9% 15 27.3% 13 23.2%
Yes 2 3.6% 1 1.8% 4 7.1% 5 8.9% 6 10.9% 3 5.4%
Tired
Full No 61 62.9% 36 36.7% 37 37.8% 17 17.5% 26 26.5% 32 32.7%
Yes 12 12.4% 13 13.3% 5 5.1% 13 13.4% 13 13.3% 13 13.3%
Psychological No 11 11.3% 22 22.4% 9 9.2% 22 22.7% 20 20.4% 15 15.3%
Yes 6 6.2% 8 8.2% 3 3.1% 15 15.5% 12 12.2% 7 7.1%
Situations No 5 5.2% 11 11.2% 35 35.7% 18 18.6% 16 16.3% 14 14.3%
Yes 2 2.1% 8 8.2% 9 9.2% 12 12.4% 11 11.2% 17 17.3%

Table 1 presents the number of and percentage of participants whose best model was for each feature set. As is clear, feature sets without time performed better than those with time. Second, relative to AUC, using accuracy as the selection metric was more likely to indicate that the full feature set performed best. Third, with some slight differences, relative proportions were similar across the three methods. Finally, for accuracy but not AUC, only RF indicated that situation feature models performed better than psychological feature models. We next examined the breakdown of selected features for each participant.

6.3.1.2 Figure (Figure 3)

Next, to demonstrate the relative performance of feature sets and coefficients within those feature sets, we’ll create a series of sequence plots that show the proportion of features from each category for each participant. This will become Figure 3.

seq_plot_fun <- function(d, outcome, model){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  m <- mapvalues(model, c("glmnet", "biscwit", "rf")
                 , c("Elastic Net", "BISCWIT", "Random Forest")
                 , warn_missing = F)
  ord <- (d %>% 
      select(-n) %>%
      pivot_wider(names_from = "category", values_from = "perc") %>%
      arrange(desc(psychological)))$SID
  p <- d %>%
    mutate(SID = factor(SID, levels = ord),
           category = factor(category,rev(unique(category))
                             , str_to_title(rev(unique(category))))) %>%
    ggplot(aes(x = SID
               , y = perc
               , rev = T)
           ) + 
    scale_fill_manual(values = c("lightgoldenrod1", "seagreen3", "deepskyblue4")) +
    geom_bar(aes(fill = category)
             , stat = "identity"
             ) +
    labs(x = "Participant ID"
         , y = "Percentage"
         , fill = "Feature Category"
         , title = m) + 
    coord_flip() +
    theme_classic() + 
    theme(legend.position = "bottom"
          , axis.text.y = element_blank()
          , axis.ticks.y = element_blank()
          , axis.text.x = element_text(face = "bold", size = rel(1.2), color = "black")
          , axis.title = element_text(face = "bold", size = rel(1.2))
          , legend.text = element_text(face = "bold")
          , legend.title = element_text(face = "bold")
          , plot.title = element_text(face = "bold", hjust = .5)
          )
  return(p)
}
## first get counts and percentages and create each plot for each outcome and model  
seq_plot <- param_res %>% 
  right_join(best_mods %>% filter(.metric == "accuracy") %>% select(model:time)) %>%
  select(-params) %>%
  filter(map_lgl(coefs, is.null) == F) %>%
  mutate(coefs = map(coefs, ~(.) %>% data.frame() %>% rownames_to_column("Variable") %>% setNames(c("Variable", "coef")))) %>%
  unnest(coefs) %>%
  mutate(Variable = str_remove_all(Variable, "_X1"),
         Variable = str_remove_all(Variable, "_1"),
         Variable = str_remove_all(Variable, "_2"),
         Variable = str_replace_all(Variable, "[.]", "_")) %>%
  filter(coef != 0) %>%
  left_join(ftrs %>% select(category = group, Variable = old_name, new_name)) %>%
  filter(!is.na(category)) %>%
  group_by(SID, outcome, model, category) %>%
  tally() %>%
  group_by(SID, outcome, model) %>%
  mutate(perc = n/sum(n)*100) %>%
  full_join(crossing(
    category = c("psychological", "situations", "time")
    , param_res %>% filter(map_lgl(coefs, is.null) == F) %>% select(model, SID, outcome))) %>%
  mutate(perc = ifelse(is.na(perc), 0, perc)) %>%
  arrange(SID, outcome, model, category) %>%
  filter(sum(perc) > 0) %>%
  group_by(outcome, model) %>% 
  nest() %>%
  ungroup() %>%
  mutate(p = pmap(list(data, outcome, model), seq_plot_fun))


seq_plot_comb_fun <- function(outcome, p){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  my_theme <- function(...) {
    theme_classic() + 
      theme(plot.title = element_text(face = "bold"))
  }
  
  title_theme <- calc_element("plot.title", my_theme())
  
  legend <- get_legend(p$p[[1]])
  p <- p %>% mutate(p = map(p, ~(.) + theme(legend.position = "none")))
  p1 <- plot_grid(
    (p %>% filter(model == "glmnet"))$p[[1]] + 
      labs(y = NULL)
    , (p %>% filter(model == "biscwit"))$p[[1]]+ 
      labs(x = NULL, y = NULL)
    , (p %>% filter(model == "rf"))$p[[1]]+ 
      labs(x = NULL, y = NULL)
    , nrow = 1
    , axis = "b"
    , align = "hv"
  )
  ttl <- ggdraw() + draw_label(o, fontface = title_theme$face)  
  p1 <- plot_grid(ttl, p1, nrow = 2, rel_heights = c(.05, .95))
  ggsave(p1
       , file = sprintf("%s/05-results/05-figures/05-seq-plots/%s.pdf", local_path, outcome)
       , width = 8, height = 5)
  ggsave(p1
       , file = sprintf("%s/05-results/05-figures/05-seq-plots/%s.png", local_path, outcome)
       , width = 8, height = 5)
  return(p1)
}

seq_plot_comb <- seq_plot %>%
  select(-data) %>%
  group_by(outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(p2 = map2(outcome, data, seq_plot_comb_fun))

legend <- get_legend(seq_plot$p[[1]])

p <- plot_grid(
  (seq_plot_comb %>% filter(outcome == "prcrst"))$p2[[1]]
  , (seq_plot_comb %>% filter(outcome == "lonely"))$p2[[1]]
  , (seq_plot_comb %>% filter(outcome == "study"))$p2[[1]]
  , nrow = 3
  , rel_heights = c(.37, .26, .37)
  )
p <- plot_grid(p, legend, nrow = 2, rel_heights = c(.95, .05)); p
Figure 3. Sequence plots of the percentage of features from the Psychological, Situational, and Time Features Sets for each participant for each outcome.

(#fig:seq plots)Figure 3. Sequence plots of the percentage of features from the Psychological, Situational, and Time Features Sets for each participant for each outcome.

ggsave(p
       , file = sprintf("%s/05-results/05-figures/fig-3-seq-plot.pdf", local_path)
       , width = 8, height = 12)
ggsave(p
       , file = sprintf("%s/05-results/05-figures/fig-3-seq-plot.png", local_path)
       , width = 8, height = 12)

As is clear in Figure 3, which shows proportions of features for all participants’ best models for each method, there were individual differences in the proportion of psychological, situational, and time features. Some participants’ best models included exclusively psychological or situational features, with most showing a varying mixture of both. In addition, as should not be surprising given that Table 1 indicated that random forest was more likely to select the situation feature set as a participant’s best model, Figure 3 demonstrates the impact this has on the relative proportion of each type of feature for each outcome.

6.4 Question 4: Which features are most associated with Procrastination and Loneliness?

6.4.1 Feature Frequency: Psychological Features, Situations, or Time?

To better understand which features were driving differences in which feature set produced the best model for each person, we next examined the variable importance metrics for each participant’s best models. To do so, we extracted the top five features and calculated the proportion of the sample that had each feature in their top five. Then, we created a figure that visually depicts those proportional frequencies of each feature for each outcome and model.

6.4.1.1 Figure (Figure 4)

var_freq <- param_res %>% 
  right_join(best_mods %>% 
               select(-.estimator, -.config) %>% 
               filter(.metric == "accuracy")
             ) %>%
  filter(map_lgl(coefs, is.null) == F) %>%
  mutate(coefs = map(coefs, ~(.) %>% 
                       data.frame() %>% 
                       rownames_to_column("Variable") %>% 
                       setNames(c("Variable", "coef")))
         ) %>%
  select(-params) %>% 
  unnest(coefs) %>%
  mutate(Variable = str_remove_all(Variable, "_X1"),
         Variable = str_remove_all(Variable, "_1"),
         Variable = str_remove_all(Variable, "_2"),
         Variable = str_replace_all(Variable, "[.]", "_")) %>%
  filter(coef != 0) %>%
  # select(-.) %>%
  group_by(model, SID, outcome) %>% 
  arrange(desc(abs(coef))) %>%
  slice_max(abs(coef), n = 5) %>%
  group_by(model, outcome) %>%
  mutate(N = length(unique(SID))) %>%
  group_by(model, outcome, Variable, N) %>%
  tally() %>%
  ungroup() %>%
  mutate(n = n/N*100) %>%
  right_join(crossing(model = c("biscwit", "glmnet", "rf"), 
                      outcome = outcomes$trait,
              ftrs %>% 
              select(group, Variable = old_name, new_name) %>%
              mutate(group = str_to_title(group)) %>%
              group_by(group) %>%
              mutate(ni = 1:n(), 
                     ni = ifelse(ni < 10, paste0("0", ni), ni),
                     Variable2 = paste0(substr(group, 1, 1), ni)
              ) %>%
              ungroup())
            ) %>%
  filter(!is.na(group)) %>%
  distinct() 
var_freq_plot_fun <- function(d, out){
  o <- mapvalues(out, outcomes$trait, outcomes$long_name, warn_missing = F)
  lim <- c(round_any(min(d$n, na.rm = T), 5, floor)-1, round_any(max(d$n, na.rm = T), 5, ceiling)+1)
  brks = seq(from = round_any(min(d$n, na.rm = T), 5, floor), round_any(max(d$n, na.rm = T), 5, ceiling), length.out = 5)
  p1 <- d %>%
  mutate(model2 = as.numeric(mapvalues(model, c("glmnet", "biscwit", "rf"), seq(5,1,-2))),
         # model2 = ifelse(outcome == "prcrst", model2 + 1, model2),
         model = factor(model, c("glmnet", "biscwit", "rf"), c("Elastic Net", "BISCWIT", "Random Forest")),
         new_name = factor(new_name, ftrs$new_name)) %>%
  arrange(model) %>%
  ggplot(aes(x = Variable2
             , y = model2
             , group = factor(Variable2)
             , fill = model
             , rev=F
             )) +
  geom_line(size = .2) + #keep this here, otherwise there is an error
  xlab("") +
  ylab("") +
  # Generate the grid lines
  geom_hline(yintercept = 1:7
             , colour = "grey80"
             , size = .2) +
  geom_vline(xintercept = 1:69
             , colour = "grey80"
             , size = .2) +
  # Points and lines
  geom_line(colour="grey80", size = .2) +
  geom_point(aes(size = n, alpha = n)
             , color = "black"
             , shape = 21) +
  # Fill the middle space with a white blank rectangle
  geom_rect(xmin=-Inf
            ,xmax=Inf
            ,ymin=-Inf
            ,ymax=0
            ,fill="white"
            , color=NA) +
  scale_y_continuous(limits=c(-5,5.5)
                     , expand=c(0,0)
                     , breaks=seq(1,5,2)
                     , labels = NULL) +
  scale_size_continuous(range = c(.5,8)
                        , limits = lim
                        , breaks = brks) + 
  scale_alpha_continuous(range = c(.3, 1)
                        , limits = lim
                        , breaks = brks) + 
  scale_fill_manual(
        values = c("deepskyblue4", "seagreen3", "lightgoldenrod1")
        , drop = F
        ) +
  # Polar coordinates
  coord_polar() +
  # The angle for the symptoms and remove the default grid lines
  theme_classic()+
  theme(axis.text.x = element_text(angle = 360/(2*pi)*rev( pi/2 + seq(pi/69, 2*pi-pi/69, len=69)) + c(rep(0,floor(69/2)), rep(180,ceiling(69/2))), size = rel(1.1), face = "bold")
        , panel.border = element_blank()
        , axis.line = element_blank()
        , axis.ticks = element_blank()
        , panel.grid = element_blank()
        , panel.background = element_blank()
        , legend.position="bottom"
        # , legend.position = "none"
        # legend.direction = "vertical",
        , plot.margin = margin(t = .5, r = 0, l = 0, b = 0, unit = "cm")
        , plot.title = element_text(face = "bold", hjust = .5)
        , strip.background = element_blank()
        , strip.text = element_text(face = "bold", size = rel(1.2))
        ) +
    labs(size = "% Participants"
         , fill = "Model"
         , alpha = "% Participants"
         , title = o) +
    guides(size = guide_legend(title.position="top", title.hjust = 0.5)
           , fill = guide_legend(title.position="top", title.hjust = 0.5) #"none"
           , alpha = guide_legend(title.position="top", title.hjust = 0.5)
           , shape = guide_legend(title.position="top", title.hjust = 0.5))
  return(p1)
}

var_freq_p <- var_freq %>%
  group_by(outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(p = map2(data, outcome, var_freq_plot_fun))

p3 <- var_freq %>% 
    select(new_name, Variable2) %>%
    distinct() %>%
    mutate(new_name = factor(new_name, ftrs$new_name),
           names = paste0(Variable2, ": ", new_name)) %>%
    arrange(Variable2) %>%
    mutate(names = factor(names, .$names)) %>%
    ggplot(aes(x = 1, y = 1:69)) +
    geom_text(aes(label = rev(names)), hjust = 0, size = 3) +
    scale_x_continuous(limits = c(.9999, 1.1))+ 
    theme_classic() +
    theme(axis.line = element_blank()
          , axis.text = element_blank()
          , axis.ticks = element_blank()
          , axis.title = element_blank())

p4 <- var_freq %>% 
    select(new_name, Variable2) %>%
    distinct() %>%
    mutate(new_name = factor(new_name, ftrs$new_name),
           names = paste0(Variable2, ": ", new_name)) %>%
    arrange(Variable2) %>%
    mutate(names = factor(names, .$names)
           , gr = ifelse(row_number() < 35, 1.5, 1)) %>%
    group_by(gr) %>%
    mutate(y = 1:n()) %>%
    ungroup() %>%
    ggplot(aes(x = gr, y = y)) +
    geom_text(aes(label = rev(names)), hjust = 0, size = 3) +
    # scale_x_continuous(limits = c(.9999, 1.1))+
    scale_x_continuous(limits = c(.9999, 1.8))+
    theme_classic() +
    theme(axis.line = element_blank()
          , axis.text = element_blank()
          , axis.ticks = element_blank()
          , axis.title = element_blank())
  # p3 <- plot_grid(p3, legend, nrow = 2, rel_heights = c(.95, .05)) + 
  #   theme(plot.margin = margin(.1,.5,.5,-1, unit = "cm"))

p5 <- var_freq %>% 
    select(new_name, Variable2) %>%
    distinct() %>%
    mutate(new_name = factor(new_name, ftrs$new_name),
           names = paste0(Variable2, ": ", new_name)) %>%
    arrange(Variable2) %>%
    mutate(names = factor(names, .$names)
           , gr = ifelse(row_number() %in% 1:6, 4.5
                  , ifelse(row_number() %in% 7:15, 4.1
                  , ifelse(row_number() %in% 16:24, 3.6
                  , ifelse(row_number() %in% 25:33, 3.1
                  , ifelse(row_number() %in% 34:42, 2.7
                  , ifelse(row_number() %in% 43:51, 2.15
                  , ifelse(row_number() %in% 52:60, 1.6, 1)))))))
           # , gr = ifelse(row_number() < 35, 1.5, 1)
           ) %>%
    group_by(gr) %>%
    mutate(y = ifelse(gr != 4.5, 1:n(), 1:n() + 3)) %>%
    ungroup() %>%
    ggplot(aes(x = gr, y = y)) +
    geom_text(aes(label = rev(names)), hjust = 0, size = 2.5) +
    # scale_x_continuous(limits = c(.9999, 1.1))+
    scale_x_continuous(limits = c(1, 4.8))+
    theme_classic() +
    theme(axis.line = element_blank()
          , axis.text = element_blank()
          , axis.ticks = element_blank()
          , axis.title = element_blank())

save_var_freq <- function(p, outcome){
  p <- plot_grid(p, p4, nrow = 1, rel_widths = c(.5, .5))
  ggsave(p, file = sprintf("%s/05-results/05-figures/06-var-freq/%s.pdf", local_path, outcome)
       , height = 9 , width = 12)
  ggsave(p, file = sprintf("%s/05-results/05-figures/06-var-freq/%s.png", local_path, outcome)
       , height = 9 , width = 12)
}

var_freq_p %>%
  mutate(p = map2(p, outcome, save_var_freq))
## # A tibble: 7 × 3
##   outcome    data               p        
##   <chr>      <list>             <list>   
## 1 argument   <tibble [207 × 8]> <chr [1]>
## 2 interacted <tibble [207 × 8]> <chr [1]>
## 3 lonely     <tibble [207 × 8]> <chr [1]>
## 4 prcrst     <tibble [207 × 8]> <chr [1]>
## 5 sick       <tibble [207 × 8]> <chr [1]>
## 6 study      <tibble [207 × 8]> <chr [1]>
## 7 tired      <tibble [207 × 8]> <chr [1]>
## setup for combinations


## Procrastination + Loneliness
l1 <- cowplot::get_legend((var_freq_p %>% filter(outcome == "prcrst"))$p[[1]] +
                            guides(fill = "none"))
p1 <- (var_freq_p %>% filter(outcome == "prcrst"))$p[[1]] + 
  theme(legend.position = "none")
p1 <- plot_grid(p1, l1, nrow = 2, rel_heights = c(.9, .1))

l2 <- cowplot::get_legend((var_freq_p %>% filter(outcome == "lonely"))$p[[1]] +
                            guides(fill = "none"))
lall <- cowplot::get_legend((var_freq_p %>% filter(outcome == "lonely"))$p[[1]] +
                            guides(size = "none", alpha = "none"))
p2 <- (var_freq_p %>% filter(outcome == "lonely"))$p[[1]] + 
  theme(legend.position = "none")
p2 <- plot_grid(p2, l2, nrow = 2, rel_heights = c(.9, .1))

l3 <- cowplot::get_legend((var_freq_p %>% filter(outcome == "study"))$p[[1]] +
                            guides(fill = "none"))
p3 <- (var_freq_p %>% filter(outcome == "study"))$p[[1]] + 
  theme(legend.position = "none")
p3 <- plot_grid(p3, l3, nrow = 2, rel_heights = c(.9, .1))

p <- plot_grid(p1, p2, p3, nrow = 1)
p <- plot_grid(p, lall, nrow = 2, rel_heights = c(.9, .1))
p <- plot_grid(p, p5, nrow = 2, rel_heights = c(.8, .2)); p

ggsave(p, file = sprintf("%s/05-results/05-figures/fig-4-combined_top5.pdf", local_path)
       , width = 14 , height = 8)
ggsave(p, file = sprintf("%s/05-results/05-figures/fig-4-combined_top5.png", local_path)
       , width = 14 , height = 8)

The resulting Figure 4 has several takeaways. First, across models, timing features were less frequent, with the exception linear, quadratic, and cubic trends (T12-T14) across the ESM period. Second, for ENR and BISCWIT, psychological features were slightly more frequent than situation features. Third, one consequence of the higher frequency of situation feature RF models being selected than for the other two models, top five situation features were both more frequent as well as more variable (more different sized circles) for the RF models than for ENR or BISCWIT (more similarly sized circles). Finally, and perhaps most crucially, this figure makes clear that person and situation characteristics were both key in predicting each outcome, with neither “dominating” the feature space.

6.4.1.1.1 Loneliness
(var_freq_p %>% filter(outcome == "lonely"))$p[[1]]

6.4.1.1.2 Procrastination
(var_freq_p %>% filter(outcome == "prcrst"))$p[[1]]

6.4.1.1.3 Studying
(var_freq_p %>% filter(outcome == "study"))$p[[1]]

6.4.1.1.4 Argument
(var_freq_p %>% filter(outcome == "argument"))$p[[1]]

6.4.1.1.5 Tired
(var_freq_p %>% filter(outcome == "tired"))$p[[1]]

6.4.1.1.6 Sick
(var_freq_p %>% filter(outcome == "sick"))$p[[1]]

6.4.1.1.7 Interacted
(var_freq_p %>% filter(outcome == "interacted"))$p[[1]]

It’s noteworthy that this figure depicts relative frequencies of each feature but says nothing about whether certain features were more or less likely to co-occur for each person. This is a question we will return to in Question 5.

6.5 Question 5: Do people vary in the which features are most important?

Next we want to address not just general frequencies of important coefficients but also patterns of coefficients at the participant level. To do this, we’ll (1) make tables of all coefficients for each participant’s best model for all outcomes and models, (2) make a figure that displays this graphically, and (3) examine whether there are patterns of coefficients across people.

6.5.1 Participant Coefficients

6.5.1.1 Table

First, let’s create tables for each participant and outcome combination of the coefficients from their models. As we’ve previously selected the feature set with the best performance, features from other sets will automatically be set to 0. In addition, as each of the models we used have feature selection procedures, features not chosen by the model will also be 0.

px_coef_tab_fun <- function(d, SID, outcome){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  mchar <- d %>% select(model, group, accuracy) %>% distinct() %>%
    mutate(model = mapvalues(model, c("glmnet", "biscwit", "rf"), c("Elastic Net", "BISCWIT", "Random Forest")),
           tmp = sprintf("%s: best model was %s with accuracy %.2f", model, group, accuracy))
  note <- paste(mchar$tmp, collapse = "; "); note <- paste0(note, ".")
  d2 <- d %>% 
    select(-group, -accuracy) %>%
    pivot_wider(names_from = "model"
                , values_from = "coef"
                , values_fn = mean) %>%
    mutate_at(vars(-Variable), ~ifelse(abs(.) > .01, sprintf("%.2f", .), ifelse(. == 0, "0", ifelse(. > -.01 & . < 0, "> -.01", "< .01")))) %>%
    full_join(ftrs %>% select(group, Variable = old_name, new_name)) %>%
    filter(!is.na(group)) %>%
    select(-Variable) %>%
    mutate(new_name = factor(new_name, ftrs$new_name)
           , group = str_to_title(group)) %>%
    mutate_at(vars(glmnet, biscwit, rf), ~ifelse(is.na(.), 0, .)) %>%
    arrange(new_name)
  
  rs <- d2 %>% group_by(group) %>% tally() %>% 
    mutate(end = cumsum(n), start = lag(end) + 1, start = ifelse(is.na(start), 1, start))
  
  tab <- d2 %>%
    select(new_name, glmnet, biscwit, rf) %>%
    kable(.
          , "html"
          , escape = F
          , col.names = c("Variable", "Elastic Net", "BISCWIT", "Random Forest")
          , align = c("r", rep("c", 3))
          , cap = sprintf("%s Model Coefficients for Participant %s", o, SID)) %>%
    kable_styling(full_width = F) %>%
    add_footnote(note, label = NULL)
  for (i in 1:nrow(rs)){
    tab <- tab %>% kableExtra::group_rows(rs$group[i], rs$start[i], rs$end[i])
  }
  save_kable(tab, file = sprintf("%s/05-results/04-tables/05-participant-coef/%s_%s.html"
                                 , local_path, SID, outcome))
  return(tab)
}

px_coef <- param_res %>% 
  right_join(best_mods %>% 
               select(-.estimator, -.config) %>% 
               filter(.metric == "accuracy")
             ) %>%
  filter(map_lgl(coefs, is.null) == F) %>%
  mutate(coefs = map(coefs, ~(.) %>% data.frame() %>% rownames_to_column("Variable") %>% setNames(c("Variable", "coef")))) %>%
  select(-params) %>% 
  unnest(coefs) %>%
  mutate(Variable = str_remove_all(Variable, "_X1"),
         Variable = str_remove_all(Variable, "_1"),
         Variable = str_remove_all(Variable, "_2"),
         Variable = str_replace_all(Variable, "[.]", "_"),
         group = sprintf("%s, %s", str_to_title(group), str_to_title(time))) %>%
  select(-set, -.metric, -time) %>%
  rename(accuracy = .estimate) %>%
  group_by(SID, outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(tab = pmap(list(data, SID, outcome), possibly(px_coef_tab_fun, NA_real_))); px_coef
## # A tibble: 549 × 4
##    SID   outcome    data               tab           
##    <chr> <chr>      <list>             <list>        
##  1 01    argument   <tibble [139 × 5]> <kablExtr [1]>
##  2 01    interacted <tibble [115 × 5]> <kablExtr [1]>
##  3 01    prcrst     <tibble [140 × 5]> <kablExtr [1]>
##  4 01    study      <tibble [138 × 5]> <kablExtr [1]>
##  5 01    tired      <tibble [115 × 5]> <kablExtr [1]>
##  6 02    interacted <tibble [168 × 5]> <kablExtr [1]>
##  7 02    prcrst     <tibble [147 × 5]> <kablExtr [1]>
##  8 02    sick       <tibble [169 × 5]> <kablExtr [1]>
##  9 02    study      <tibble [125 × 5]> <kablExtr [1]>
## 10 02    tired      <tibble [125 × 5]> <kablExtr [1]>
## # … with 539 more rows

All of these tables will be contained with the R shiny web app for readers to peruse at their leisure. An in detail description of each is a little beyond the goal and scope of the present study. However, the three sample participants from the manuscript are shown below.

Notably (and by design), each of these participants differed in the feature set. Participant 169’s best model had the psychological feature set; Participant 43 had the situation feature set; and Participant 160 had the full feature set (psychological + situations).

A few general notes on all these tables. ENR shows log odds coefficient weights, BISCWIT shows zero-order correlation weights, and Random Forest shows permutation-based variable importance metrics. Thus, these are not directly comparable, and observations like that the size of the coefficients tend to be smaller for biscwit are better thought of as relative. The direction magnitude relative to other coefficients / correlations / variable importance metrics tend to be similar across models relative to other variables in the same model. But due to differences in the estimation procedures of these models, they are not (and should not be expected to be) the same across models.

6.5.1.2 Figure

Now we’ll create some figures that display the same information but make relative comparisons within a model easier.

coef_plot_fun <- function(d, outcome, gr, SID, model){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  mod <- mapvalues(model, c("glmnet", "biscwit", "rf"), c("Elastic Net", "BISCWIT", "Random Forest"), warn_missing = F)
  ttl <- sprintf("Best %s Model (%s) Predicting \n%s for Participant %s", mod, gr, o, SID)
  d <- d %>% mutate(neg = ifelse(sign(coef) == -1, "(-)", NA), coef = abs(coef))
  # Set a number of 'empty bar' to add at the end of each group
  empty_bar <- 4
  to_add <- data.frame(matrix(NA, empty_bar*nlevels(factor(d$category)), ncol(d)) )
  colnames(to_add) <- colnames(d)
  to_add$category <- rep(levels(factor(d$category)), each=empty_bar)
  d <- rbind(d, to_add)
  d <- d %>% arrange(category, desc(coef))
  d$id <- seq(1, nrow(d))
  
  
  breaks <- round(seq(0, max(d$coef, na.rm = T), length.out = 5),2)
  rng <- c(-1*(breaks[5]-.01), breaks[5]+.01)
   
  # Get the name and the y position of each label
  label_data <- d
  number_of_bar <- nrow(label_data)
  angle <- 90 - 360 * (label_data$id-0.5) /number_of_bar     # I substract 0.5 because the letter must have the angle of the center of the bars. Not extreme right(1) or extreme left (0)
  label_data$hjust <- ifelse( angle < -90, 1, 0)
  label_data$angle <- ifelse(angle < -90, angle+180, angle)
  label_data <- label_data %>% 
    mutate(y = ifelse(is.na(coef) | coef < 0, 0, coef + rng[2]/20)
           , lab = ifelse(!is.na(coef) & coef > 0, str_wrap(`short name`, 20), `short name`))
  rng <- c(round(-1*max(label_data$y),2)-.01, round(max(label_data$y),2)+.01)
  
  # prepare a data frame for base lines
  base_data <- d %>%
    group_by(category) %>%
    summarize(start=min(id), end=max(id) - empty_bar) %>%
    rowwise() %>%
    mutate(title=mean(c(start, end)))
 
  
  breaks <- breaks[1:4]
  # rng <- c(-1*breaks[4], breaks[4])
  # prepare a data frame for grid (scales)
  grid_data <- base_data
  grid_data$end <- grid_data$end[ c( nrow(grid_data), 1:nrow(grid_data)-1)] + 1
  grid_data$start <- grid_data$start - 1
  grid_data <- grid_data[-1,]
  # grid_data <- grid_data %>% crossing(breaks)
  
  p <- d %>%
    ggplot(aes(
      x = as.factor(id)
      , y = coef
      , fill = category
    )) +
      geom_bar(aes(na.rm = F), stat="identity", alpha=0.5) + 
      scale_x_discrete(drop=FALSE) +
      scale_fill_manual(
        values = c("deepskyblue4", "seagreen3", "lightgoldenrod1")
        , drop = F
        ) +
  
    # Add a val=100/75/50/25 lines. I do it at the beginning to make sur barplots are OVER it.
      geom_segment(data = grid_data
                   , aes(x = end, y = breaks[1], xend = start, yend = breaks[1])
                   , colour = "grey"
                   , alpha=1
                   , size=0.3
                   , inherit.aes = FALSE ) + 
    geom_segment(data = grid_data
                   , aes(x = end, y = breaks[2], xend = start, yend = breaks[2])
                   , colour = "grey"
                   , alpha=1
                   , size=0.3
                   , inherit.aes = FALSE ) + 
    geom_segment(data = grid_data
                   , aes(x = end, y = breaks[3], xend = start, yend = breaks[3])
                   , colour = "grey"
                   , alpha=1
                   , size=0.3
                   , inherit.aes = FALSE ) + 
    geom_segment(data = grid_data
                   , aes(x = end, y = breaks[4], xend = start, yend = breaks[4])
                   , colour = "grey"
                   , alpha=1
                   , size=0.3
                   , inherit.aes = FALSE ) + 
      #  # Add text showing the value of each 100/75/50/25 lines
      annotate("text"
               , x = rep(max(d$id),4)
               , y = breaks
               , label = paste0(breaks, "-")
               , color="grey"
               , size=3
               , angle=0
               , fontface="bold"
               , hjust=1) +
      ylim(rng[1], rng[2]) + 
      theme_minimal() +
      theme(
        # legend.position = "none",
        legend.position = "bottom",
        axis.text = element_blank(),
        axis.title = element_blank(),
        panel.grid = element_blank(),
        plot.title = element_text(hjust = .5, size = rel(1))
        # plot.margin = unit(rep(-1,4), "cm") 
      ) +
      coord_polar() +
      labs(fill = "Feature Category", title = ttl) + 
      guides(fill = guide_legend(title.position="top", title.hjust = .5, label.hjust = 0)) + 
      geom_text(data = label_data
                , aes(x = id
                      , y = y#coef
                      , label = lab
                      , hjust = hjust)
                , color="black"
                , fontface="bold"
                , lineheight = .6
                , alpha=0.6
                , size=2.5
                , angle= label_data$angle
                , inherit.aes = FALSE) + 
    geom_text(data = label_data
                , aes(x = id
                      , y = coef - rng[2]/20
                      , label = neg)
                , color="black"
                , hjust = .5
                , fontface="bold"
                , lineheight = .6
                , size=2
                , angle= label_data$angle
                , inherit.aes = FALSE) + 
    # Add base line information
    geom_segment(data = base_data
                 , aes(x = start
                       , y = rng[1]/20
                       , xend = end
                       , yend = rng[1]/20)
                 , colour = "black"
                 , alpha=0.8
                 , size=0.6 
                 , inherit.aes = FALSE) 
  ggsave(p, filename = sprintf("%s/05-results/05-figures/02-participant-coef/%s/%s_%s.pdf"
                            , local_path, model, SID, outcome)
         , width = 6, height = 8)
  ggsave(p, filename = sprintf("%s/05-results/05-figures/02-participant-coef/%s/png/%s_%s.png"
                            , local_path, model, SID, outcome)
         , width = 6, height = 8)
  return(p)
}


px_coef_fig <- param_res %>% 
  right_join(best_mods %>% filter(.metric == "accuracy") %>% select(model:time)) %>% 
  select(-params) %>% 
  filter(map_lgl(coefs, is.null) == F) %>% 
  mutate(coefs = map(coefs, ~(.) %>% 
                       data.frame() %>% 
                       rownames_to_column("Variable") %>% 
                       setNames(c("Variable", "coef")))
         ) %>%
    unnest(coefs) %>%
    mutate(Variable = str_remove_all(Variable, "_X1"),
           Variable = str_remove_all(Variable, "_1"),
           Variable = str_remove_all(Variable, "_2"),
           Variable = str_replace_all(Variable, "[.]", "_"),
         group = sprintf("%s, %s", str_to_title(group), str_to_title(time))) %>%
  select(-set, -time) %>%
  group_by(model, SID, outcome, group, Variable) %>%
  summarize(coef = mean(coef)) %>%
  ungroup() %>%
  group_by(model, outcome, SID, group) %>%
  nest() %>%
  ungroup() %>%
  mutate(data = map(data, ~(.) %>% 
                      full_join(ftrs %>% 
                                  select(category = group, Variable = old_name, `short name`)
                                ) %>%
                      mutate(coef = ifelse(coef == 0, NA_real_, coef)
                             , category = factor(str_to_title(category)))),
         p = pmap(list(data, outcome, group, SID, model)
                  , possibly(coef_plot_fun, NA_real_)))

As before, we’ll show our three example participants. These figures are present in the manuscript as Figures 5-7.

6.5.2 Profile Similarity

Finally, when we looked at relative proportional frequencies of different features appearing in particiapnts’ top fives, it told us nothing about the tendency of features to co-occur. To look at this, we’ll opt for a simple visual depiction of the profile of coefficients/correlations/variable importance for each participant’s best model for each metric (accuracy, AUC), outcome (procrastination, loneliness), and model (ENR, BISCWIT, RF).

procor_fun <- function(d){
  m <- d %>% 
    select(-SID) %>%
    mutate_all(~ifelse(is.na(.), 0, .)) %>%
    as.matrix(); rownames(m) <- d$SID
  r <- cor(t(m))
  diag(r) <- NA
  rd <- r %>% data.frame() %>% 
    rownames_to_column("SID1") %>%
    pivot_longer(cols = -SID1
                 , names_to = "SID2"
                 , values_to = "r"
                 , values_drop_na = T) %>%
    mutate(SID2 = str_remove_all(SID2, "X"))
  
  r %>%
    mutate(r = fisherz(r)) %>%
    group_by(SID1) %>%
    summarize_at(vars(r), lst(mean, min, max))
}

profile_sim <- param_res %>%
  select(-params) %>%
  right_join(best_mods %>% select(model:.metric)) %>%
  filter(map_lgl(coefs, is.null) == F) %>% 
  mutate(coefs = map(coefs, ~(.) %>% 
                       data.frame() %>% 
                       rownames_to_column("Variable") %>% 
                       setNames(c("Variable", "coef")))
         ) %>%
    unnest(coefs) %>%
    mutate(Variable = str_remove_all(Variable, "_X1"),
           Variable = str_remove_all(Variable, "_1"),
           Variable = str_remove_all(Variable, "_2"),
           Variable = str_replace_all(Variable, "[.]", "_")) %>%
    filter(Variable %in% ftrs$old_name) %>%
  group_by(model, SID, outcome, .metric, Variable) %>%
  summarize(coef = mean(coef)) %>%
  ungroup()

profile_plot_fun <- function(d, model, metric, outcome){
  o <- mapvalues(outcome, outcomes$trait, outcomes$long_name, warn_missing = F)
  mod <- mapvalues(model, c("glmnet", "biscwit", "rf"), c("Elastic Net", "BISCWIT", "Random Forest"), warn_missing = F)
  m <- mapvalues(metric, c("accuracy", "roc_auc"), c("Accuracy", "AUC"), warn_missing = F)
  ttl <- sprintf("%s Predicting Future %s Using Best %s Models", mod, o, m)
  min <- if(model == "glmnet") 5 else if (model == "biscwit") 1 else max(abs(d$coef), na.rm = T)
  p <- d %>%
  mutate(coef = ifelse(coef == 0, NA, coef)
         , coef = ifelse(coef > min, min, ifelse(coef < -1*min, -1*min, coef))
         , group = str_to_title(group)
         , new_name = factor(new_name, rev(ftrs$new_name))) %>%
  drop_na() %>%
  ggplot(aes(x = SID, y = new_name, color = coef)) + 
    scale_color_gradient2(low = "blue"
                          , mid = "white"
                          , high = "red"
                          # , limits = c(-5,5)
                          ) + 
    geom_point() + 
    labs(x = "Participant ID", y = NULL, color = "Coefficient"
         , title = ttl) + 
    facet_grid(group ~ ., space = "free", scale = "free") + 
    theme_classic() + 
    theme(axis.text.x = element_text(angle = 90, face = "bold")
          , axis.text.y = element_text(face = "bold")
          , plot.title = element_text(hjust = .5, face = "bold")
          , legend.position = "bottom"
          , strip.background = element_rect(fill = "black")
          , strip.text = element_text(face = "bold", color = "white", size = rel(1.2))
          )
  ggsave(p, file = sprintf("%s/05-results/05-figures/03-px-profiles/%s_%s_%s.pdf"
                           , local_path, outcome, model, metric)
         , width = 12, height = 10)
  ggsave(p, file = sprintf("%s/05-results/05-figures/03-px-profiles/png/%s_%s_%s.png"
                           , local_path, outcome, model, metric)
         , width = 12, height = 10)
  return(p)
}
  
profile_sim_plots <- profile_sim %>%
  left_join(ftrs %>% select(group, Variable = old_name, new_name)) %>%
  group_by(model, .metric, outcome) %>%
  nest() %>%
  ungroup() %>%
  mutate(p = pmap(list(data, model, .metric, outcome), profile_plot_fun))

For parsimony, I’m just going to display the accuracy plots. You’ll find the others in the online materials and webapp.

6.5.2.1 Elastic Net

Broadly there are a few takeaways from each of these figures. First, relative to other models (see below), ENR tended to include more features in any given model. However, likely due to the the combination of both soft and hard constraints via L1 and L2 regularization, the magnitudes were relatively low for some individuals than others. Second, only a relatively small number of participants’ best models had timing features. Third, even common features varied widely across people in presence, direction, and magnitude without exception. Finally, no two profiles are the same even just in which features were included, let alone in direction and magnitude of the associations.

tmp <- profile_sim_plots %>% 
  filter(model == "glmnet" & .metric == "accuracy") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.5.2.1.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$p[[1]]

6.5.2.1.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$p[[1]]

6.5.2.1.3 Studying
(tmp %>% filter(outcome == "study"))$p[[1]]

6.5.2.1.4 Argument
(tmp %>% filter(outcome == "argument"))$p[[1]]

6.5.2.1.5 Tired
(tmp %>% filter(outcome == "tired"))$p[[1]]

6.5.2.1.6 Sick
(tmp %>% filter(outcome == "sick"))$p[[1]]

6.5.2.1.7 Interacted
(tmp %>% filter(outcome == "interacted"))$p[[1]]

6.5.2.2 BISCWIT

Broadly there are a few takeaways from each of these figures. First, the relative magnitude of the correlations tended to be stronger in the positive direction than the negative one. Second, only a relatively small number of participants’ best models had timing features. Third, even common features varied widely across people in presence, direction, and magnitude without exception. Finally, no two profiles are the same even just in which features were included, let alone in direction and magnitude of the associations.

tmp <- profile_sim_plots %>% 
  filter(model == "biscwit" & .metric == "accuracy") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name),
         out = ifelse(out == "Procrastinating", "Procrastinating (Figure 5)", out))
6.5.2.2.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$p[[1]]

6.5.2.2.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$p[[1]]

6.5.2.2.3 Studying
(tmp %>% filter(outcome == "study"))$p[[1]]

6.5.2.2.4 Argument
(tmp %>% filter(outcome == "argument"))$p[[1]]

6.5.2.2.5 Tired
(tmp %>% filter(outcome == "tired"))$p[[1]]

6.5.2.2.6 Sick
(tmp %>% filter(outcome == "sick"))$p[[1]]

6.5.2.2.7 Interacted
(tmp %>% filter(outcome == "interacted"))$p[[1]]

6.5.2.3 Random Forest

tmp <- profile_sim_plots %>% 
  filter(model == "rf" & .metric == "accuracy") %>%
  mutate(out = mapvalues(outcome, outcomes$trait, outcomes$long_name))
6.5.2.3.1 Loneliness
(tmp %>% filter(outcome == "lonely"))$p[[1]]

6.5.2.3.2 Procrastination
(tmp %>% filter(outcome == "prcrst"))$p[[1]]

6.5.2.3.3 Studying
(tmp %>% filter(outcome == "study"))$p[[1]]

6.5.2.3.4 Argument
(tmp %>% filter(outcome == "argument"))$p[[1]]

6.5.2.3.5 Tired
(tmp %>% filter(outcome == "tired"))$p[[1]]

6.5.2.3.6 Sick
(tmp %>% filter(outcome == "sick"))$p[[1]]

6.5.2.3.7 Interacted
(tmp %>% filter(outcome == "interacted"))$p[[1]]